
BOLT B E R A N E K A;N D N E W M A N i.c

C O N S U [T I N G ' D E V E I O P M E N T R E S E A R C H

BBN Report No. 2378

Job No. 11501

THE LUNAR SCIENCES

NATURAL LANGUAGE INFORMATION SYSTEM:

FINAL REPORT

W.A. Woods

R. M. Kaplan

B. Nash-Webber

Bolt Beranek and Newman Inc.

50 Moulton Street

Cambridge, Massachusetts

June 15, 1972

Prepared for:

The Language Research Foundation

131 Mt. Auburn Street

Cambridge, Massachusetts

Supported by:
Contract No. NAS9-1115 7

NASA Manned Spacecraft Center

]{ouston. Texa_

(NASA-CR-128538} T_£ LUNAR SCIENCES NAtUrAL
LANGUAGE INYOR_TIGN _¥SfE_ final Report

(Bo_t, Berane_, aBO Newman, Inc.) 390 p

385-71018

UnclaE

00/82 13285

Dzstrzbution of this document is unlimited. It may be released

to the clearinghouse, Departmen_ of Commerce for sale to the
general public.

CAMBRIDGE NEW YORK CHICAGO
I. OS ANGELES SAN FRANCISCO

THE LUNAR SCIENCES NATURAL LANGUAGE INFOR_DATION SYSTEM:

FINAL REPORT

W.A. Woods

R.M. Kaplan

B. Nash-Webber

Bolt Beranek and Newman Inc.

Cambridge, Massachusetts

June 1972

Preface

Chapter i.

Chapter 2.

Chapter 3.

Chapter 4.

Chapter 5.

References

CONTENTS

oooooeoooooooooooooooooeooooooooooooooooeoeoooeoo

Introduction

The Analysis System

The Grammar

Semantic Interpretation Strategies

Conclusion

ooJooeoeoeoeoooooooeoooooooeooeoooeeoooooeoeoo

Page

iii

i.I

2.1

3.1

4.1

5.1

5.13

Appendices

Ao

B.

C.

D.

E.

F.

G.

The LSNLIS User's Guide

The Transition Network Grammar

Semantic Rules

Documentation of Functions

The

The

Examples

Organization of the Dictionary

Retrieval Component

A.I

B.I

C.l

D.1

E.I

F.I

G.I

PRECEDING PAGE BL._'qK NOT ["]I_:_l<,

PREFACE

This report describes the current state of a two-year

research project aimed toward the development of a prototype

natural language question-answering system for lunar geologists.

During these two years, the project has made considerable progress

toward the ultimate goal of providing a general purpose natural

language interface between men and machines. The project has built

on the results of previous work in natural language understanding

and is itself merely a stepping stone on the path of discovery

that may someday make computers as generally available and con-

veniently accessible as one's next-door neighbor.

The Lunar Sciences Natural Language Information System

(LSNLIS) is the result of these two years of joint effort by Bolt,

Beranek, and Newman, and the Language Research Foundation, Cambridge,

Mass. It is an experimental, research prototype of a question-

answering system to enable a lunar geologist to conveniently access,

compare, and evaluate the chemical analysis data on lunar rock and

soil composition that is accumulating as a result of the Apollo

moon missions. The objective of the research has been to develop a

natural language understanding facility sufficiently natural and

complete that the task of selecting the wording for a complex

request becomes a negligible effort for the geologist user. Such

a goal has not been achieved by any previous "natural-language"

question-answering system.

Chapter 1 of the report gives a brief introduction to the

system and an explanation of its goals and objectives. Chapter 5

contains a discussion of the capabilities of the current system

and an evaluation of the prospects for further development. In

between, Chapters 2, 3, and 4 give more detailed descriptions of

the analysis system, the English grammar it contains, and the

general techniques and strategies of semantic interpretation used

to interpret the meanings of the user's requests.

'-_ iii

Appendices to the report contain a brief users manual
and a collection of examples of the system's performance (which may

be useful to the casual reader in establishing a concrete under-

standing of what the system does) as well as complete listings of

grammar and semantic rules and detailed system documentation.

In addition to the authors, the following staff have

participated in the project:

Joe Becker

Dan Bobrow

Ben Wegbreit

We are also especially grateful to Gail Hedtler and Elsie Leavitt

for assistance in preparing this report.

This report expands, updates, and supercedes BBN Report

#2265 (Woods & Kaplan, 1971) which described the state of the

project at the end of its first year.

W. Woods

June, 1972

iv

Chapter 1

INTRODUCTI ON

i.i Background and Objectives

The Lunar Sciences Natural Language Information System (LSNLIS)

is a prototype computer system which allows English language access

to a large data base of lunar sample information. The system

was developed jointly by Bolt Beranek and Newman Inc. and

Language Research Foundation, Cambridge, Massachusetts for the

NASA Manned Spacecraft Center, Houston, Texas.

The motivation for the LSNLIS project arises from the diffi-

culty of obtaining the basic information required by the working

scientist to formulate and test his h_,potheses_ . The data that bear

on a hypothesis may be scattered through the literature in many

different papers, and the task of finding the papers, collecting

the information, standardizing the units, and mahing t_le necessary

computations for a given ar_plication, is a formidable task. More-

over, when the results are in and the computation has been raaae,

other questions are suggested to the scientist by the results, and

the process begins again. Imagine instead that the published

findings had already been collected into a computer system, which

not only could give references to the literature, but which

actually "understood" the numbers and measurements reported in the

documents and was capable of performing calculations on these

numbers. The evidence for or against a given hypothesis could

then be obtained in a matter of minutes instead of days or weeks

or months. In such a system, the remaining obstacle to the

scientist would be the task of discovering whether the data base

contained the necessary information for his need, finding out the

formats of the tables, the notations used, units of measurement,

etc., and learning how to use the system--specifically, learning

a programming language for expressing requests. Imagine, further,

then, that this computer system could understand the scientist's

natural language so that the scientist could merely state his

request in English and the system would be capable of understanding

what information was needed and either provide it (by retrieval or

computation) or tell the user that the reauest was beyond the scope

of its data base. The goals of the LSNLIS project are to develop

a system which is as close to this idealized goal as the present

state of the art allows, and do it in such a way that continual

extensions of the system's capabilitieF can be made to converge on

this goal sometime in the future.

There are two important reasons why one might want to

use English as a mode of communication between a man and a machine.

First, the man already knows his natural language and if he is to

use a computer seldom or as a minor part of his work, then he may

not have the time or inclination to learn a formal machine language.

Second, the human thinks in his native language, and if the mode

of communication involves the free and immediate communication of

ideas to the machine which the user is conceiving in the course of

the interaction, then the additional effort required for the human

to translate his ideas into another language more suitable to the

machine may slow down or otherwise interfere with the interaction.

English is therefore an attractive medium because the human can

express his ideas in the form in which they occur to him.

i.i.i Can We Build Such a System?

Although the state of the art in "un&erstanding" natural

language by machine is still very limited, significant advances

in this area have been made in recent years. Since Simmons'

first survey of question answering systems, (Simmons, 1965), our

un<ierstanding of the rL'_ysterious "semantic interpretation" cc>mponent

has been made more clear by work such as _oods (1967,1968), and

1.2

the techniques for mechanically parsing natural language sentences

have been advanced by the advent of transition network grammars
and their parsing algorithms (Woods, 1969,1970). The field is

now at the point where prototype applications to real problems

can make significant contributions to our understanding of the

problems of natural language communication with machines. It must

be realized, that such applications are still essentially research

vehicles, since the problems of mechanical understanding of natural

language remain far from solution. However, by using real problems

(rather than imaginary toy problems) as the vehicles for such

research, one can not only focus the effort on probl_ns in neeu of

solution, but may also reap the additional benefit cf producing a

system which will perform (in its limited way) a task which someone

really wants done. The LSNLIS prototype is such an application .

1.1.2 Method of APproach.

The method of approach wltich we have ado_)ted in tilis study

has been to look ahead to the potential capabilities for a future

LSNLIS system, and to adoDt general solutions to _)robleiLs that

will remain valid for ap_lications of considerably greater scope

than the current project. I{e have therefore cl_osen to implement

the retrieval component within a general semantic framewor}:

(see Woods, 196_) and to t)rovide a comprehensive and rigorous

grammar of the subset of English involved. We h}_ve an existing

parsing system for transition network gr_:imars (woods, 1969,1970)

to provide a powerful general parsing capabilit} within reasonable

amounts of processing time, and have operated on the resulting

narse trees with a general purpose, rule-driven semantic inter-

pretation procedure (Woods, 1967,1968) for transforming them into

representations of their meanings. Although the goal of accepting

an input ret, uest in any phrasing which a user might as]< is one

which will reauire additional grammar development an_ semantic

work, the system has already achieved considerable Dro_ress

towards this goal, and the components and organization which

we have used in buil£inq the system hermit continual aradual

evolution towards its achievement.

1.3

All of the components of the system have been implemented

in BBN-LISP on the PDP-10 computer at BBN in Cambridge, f!ass.,

running under the TENEX time sharing system with hardware paging

and a virtual core memory for each user of up to 256K. Although
there is considerable overhead in running time for programs written

in LISP and executed in a paged environment, the flexibility of

this system has been a critical factor in the development of the

present level of capability within the time scale of the contract.

The design of the current system _,as carried out in a way
that attempted to maximize tile flexil_ility for such]_asic changes

as: changing notations in dictionaries, c]_anging [)arsing strategies,

and[modifying semantic interpretation rules and nrocedures; ant

indeed all of these]l_!ve l)een c::anged extt_nsively in tile course

of this project in order to achieve the current level of perfor-

mance. Thus the current system represents the result of consiuur-

able evolution w]!ich would not have been possible _,it]_in t_is time

scale with a more rigid style of prograr{_:/ng or a less fl_xi_)le

programming language.

1.2 Capabilities of the Current ,qvstem

The current LS}TLIS nrototvme allows a lunar scientist to

ask questions, commute averaqes and ratios, anti make selective

listinqs based on the information in a chemical analysis data

table. He can also retrieve references from a keyphrase index

and make chanaes in the data base. _he system permits the user

to easily comnare the measurements of different researchers,

compare the concentrations of elements or isotopes in different

types of samples or in different phases of a sa_!nle, compute

averages over various classes of samDles, corLnute ratios of t_Jo

constituents of a sample, etc.--all in straightfo_;ard natural

English.

1.4

The system removes from the user the burden of learning the
detailed formats and codes of the data base tables, or learning a

special programming language. For exam_ple, the system knows the

various ways that a user may refer to a particular class of

samples, it knows whether a given element is stored in the data
base in terms of its elemental concentration or the concentration

of its oxide, it knows what abbreviations of mineral nantes have

been used in the tables, etc., and it converts the user's request

into the appropriate form to agree with the data base tables,

regardless of the form in which he actually makes his request.

Thus, the present system has already made significant strides

toward making the coma_unication with the machine so natural and
conveneint that it need not interfere with the researcher's

train of thought.

In the followinq sections we will nresent a sunerficial

description of the system and the kinds of onerations it nerforms.

More detailed descriptions of the organization of the system

and the way it operates are given in chapters 2, 3, and 4, and

in the appendices.

1.2.1 System Components

The LSNLIS system consists of three major components--a

transition network parser with a large grammar of English an_ a

large dictionary, a general purpose semantic internretation

component, and a retrieval component consisting of the data base

and a collection of general puri>ose and specific retrieval

functions. The parser performs a detaileO syntactic analysis of

the user's question and passes the resulting varsing to the semantic

interpretation component for translation into t}_e for_al request

language of the retrieval component. The first two con_[_onents of

the system thus function to translate the user's request into a

program in the formal request language which will corlpute the

answer to the question. This program is then executea in the

retrieval component to produce the answer.

1.5

The system is operational on the TENEX time-sharing

system in two 256K tasks (called "forks")--one containing

the parser, interpreter, grammar and dictionary, and the

other containing the data base and retrieval functions.

Formal requests and answers to questions are passed between
the two forks by means of file buffers. This division of

the system between language processing component and

retrieval component would make it easy to operate in a mode

in which the language processing component resided on one

computer and the retrieval component on another computer

somewhere else.

The LSNLIS system presently contains a dictionary of

approximately 3500 words consisting of a selection of general

English vocabulary and a large technical vocabulary of

geological and chemical terms. It's grammar is a transition

network grammar of the type described in Woods (1969, 1970)

and produces output in the form of Chomskv-tvpe deep structures.

This output is translated into formal requests for the retrieval

component by a general purpose, rule-driven semantic interpreter.

1.2.2 The Data Base

The LSi'_LIS system is intended to eventually handle any nu_er

of data base files with different structur_:s and characteristics.

However, for ti_e initial prototype, two data base files were

provided by _4SC. One is a 13,000 line table of chemical and age

analyses of th_ Apollo ii sample_ extractoc_ frcr_ t_:e reports of

the First Annual Lunar Science Conference, and the second is a

keyphrase index to tilose reports. Samples of these two uata bases

are shown in figures 2-9 and 2-10. The first contains entries

specifyin_ the concentration of some constituent in some phase

of some sample, to<ether with a reference to the article in which

the measurement was reported. (There are cenerally several entries

for each combination of sample, phase, ana constituent--measured

by different investi<ators.) The second is a list of keyphrases

and documents which have been indexed by t_<m.

1.6

The major thrust of this project has been the development
of the parsing and semantic ._nterpretation components to handle

the natural language querying aspect of the problem. The retrieval

component was implemented primarily to provide a complete on-line

environment for carrying out the research. Thus, the retrieval

component has been implemented in a relatively straightfor_lard

manner using the TENEX system's automatic paging facility to take

care of the problems of memory allocation so that we could devote

most of our effort to the natural language problems. Since the

retrieval component resides in an entirely separate for]: inter-

faced via the general purpose request language discussed above,

there is no difficulty in substituting a more sophisticated

retrieval component later.

When an input request has been processed in the English

processor fork, the resulting formal request is comm_unicated to

the retrieval fork via a file buffer and control is passed to

the retrieval fork until the request has been executed, k'he answer

is then returned to the user via a file buffer and t]_e English

processor fork resumc..s control. This organization means ti_ot in

principal, there would be little difference whether the retrieval

component resided in another fork of the TENEX system or in another

computer (e.g. at IIouston) connected by telephone lines to t!,{_

B B]',:I computer.

1.2.3 Intended Types of Questions

Before beginning a discussion of tl_e caoabi lities of the

LSNLIS system, it is important to recognize a sharp distinction

between the types of questions which the prototype system will

now handle, the types of questions toward whic]l it aspires, and

the types of questions which in principle could be asked, but

which we have no intentions of handling. The distinction between

the first two types obviously changes wit}l time, since new con-

structions are continually being added to the repertory of the

system, even as this report is being written. %'his distinction

1.7

is primarily a measure of how far we have progressed toward our

goals. A more important distinction is that between questions
for which the system is intended and thone for which it is not.

In designing the system, we assume theft the questions will

be asked by a scientist with an interest in obtaining information

and that they will be stated in a direct and straightforward

manner. Thus, we are especially concerned with handling con-

structions which might be used by such a user, and we do not want

to devote extensive effort to handling "frivolous" questions.

Thus, when choices must be made (as they must) as to which

constructions are most important in the development of the

grammar and understanding capability of the system, priority

is given to constructions wi_ich we feel might be used by a

serious user in need of information. We do not, for example,

assign much priority to handling constructions such as "tag

questions" (e.g. "Lunar rocks contain oxygen, don't they?",

"Sample SI0046 is a breccia, isn't it?", etc.), and many other

constructions which occur in English but _7_uld not appreciably
increase the usefulness of the system. Likewise, _,e are not

interested in questions which require evaluation, juagment, or

conclusions on the part of the system (e.g. "Does the moon have

a hot core?", "What is tl.e most probable source of tl_e lunar

dust?", etc.). It is the task of tile scientist to interpret

the data, and we are trying to aid him in ti_is task--not replace
him.

Tile questions for which the system is intended, are straight-

forward factual questions, which arise directly from measurements

and observations of the samples. %he following list gives a

representative sample of the types of sentences for which the
system is intended:

i. List the rocks which contain chromite and ulvospinel.

2. Give me all references on fayalitic olivine.
3. What minerals have _een identifiec in the lunar samples?

4. IChat analyses of olivine are there?

5. _at is the average analysis of Ir in rock SI00557
6. List the modes for all low Rb rocks.

7. Give me the K / Rb ratios for all lunar samples.

8. Has the mineral analcite been identified in any

lunar sample?

9. What is the concentration of La in rock SI0034?

i0. Identify all samples in which glass was found.

ii. Give me all modal analyses of lunar fines.

12. In what samples has apatite been identified?

1.2.4 Querying the Data Base

In this section we will give a sample of the tvnes of

querying interactions which the system permits. '!ore examples

are given in Appendix G.

Perhaps the most typical example of a request which a

geologist might make to the LS_]LIS system is illustrated by

the following protocol:

38**(WHAT IS THE AVERAGE CONCENTRATION OF ALUMINUM IN

HIGH ALKALI ROCKS)

PARSING

t331CONSES

4°?87 SECONDS

INTERPRETING

_427 CONSES

II,@25 SECONDS

INTERPRETATIONS:

(FOR THE X13 / (SEQL (AVERAGE X14 / (SSUNION XI5 / (SEQ TYPEAR) *

T ; (DATALINE (WHQFILE XIS) XI5 (NPR= X16 / (QUOTE OVERALL)) (NPRe

X]7 / (QUOTE AL203)))) : T)) : T ; (PRINTOUT X13))

BBN LISP-tO R3-09-72 ...

EXECUTING

(8.134996 • PCT)

(Here, the system has typed the two asterisks, the user typed the

question, beginning and ending with parentheses, and the system

typed the rest. The con_nents 1331 CON qES and 4.987 S_CONDS

give a record of the memory resources and the time u_;ed during

1.9

the parsing phase. A similar record is generated for the interpre-

tation phase. The expression following the comment INTERPRETArfIONS:

is the formal retrieval program which is executed in the data base

to produce the answer.) This request illustrates a num_,er of

features of the system:

i. The user types the question exactly as he would say it

in English (terminal punctuation is optional and was omitted in

the example).

2. The system has translated the phrase "high alkali rocks"
into the internal table form TYPEAS.

3. The system has filled in an assumed OVE]'ALL ohase for

the concentration since the request does not mention any specific

phase of the sample in which the concentration is to he measured.

4. 'fhe system is capable of computing ansuers from the data

base as well as simply retrieving them (the average _,;as not stored

information) .

Perhaps the simplest operation which the system will nerform

for the user is to collect and list selected portions (not

necessarily contiguous) of the data base. _or examnle, in

response to a request "Cive me all analyses of SI0046," the

system would respond as follows:

3?**(GIVE ME ALL ANALYSES OF SI_046)

PAWSING

1456 CONSES

9.445 SECONDS

INTERPRETING

2112 CONSES

8.5_2 SECONDS
INTERPRETATIONS:

(DO (FOR EVERY X9 / (SSIINION Xl2 / (SEQ MAJORELTS) : T ; (DATALINE

(wHgWILE (NPR* Xl_ / (gUOTE SIRe46))) (NPR, XI_ / (QUOTE SIRe46))

(NPR* Xll / (QUOTE OVERALL)) Xl?)) : T ; (PRINTOUT xg)))

FJBN LISP-IQ 03-R9-72 ...

EXECUTING

1.10

I HAVE 15 HITS

DO YOU WANT TO SEE THEM? YES

3956 510046 OVERALL SLOP_

3967 T 102

3968

3865 AL203

3900 FEO

390 !

39P_8 MNO

3929

3927 MGO
3875 CAO

3917 K20

3918

3919

3933 NA20

3934

44,06752

8.3405

6.50559

I I .7149
16.9818

15.438

.'_.0659

.22725

9.11845

13,71P_16

._0478

.19515

• 14455

.4718

°50146

PCT D7_-235

D70-254

D70-235

D70-254

D70-P_35

D70-254

DTR-P_35

D7_-242

D70-254
D70-235

D70-254

0

This example illustrates some additional features of the system.

Again, since no phase was mentioned, the system assumed the

OVERALL phase (i.e. the rock as a whole). If the user had

wanted to see all the phases, he could have said e×nlicitlv

"for all phases". Similarly, since no specific elements or

isotopes were mentioned, the system assumed a standard list

of major elements was intended (Our geoloqist informant assures

us that this is what a geologist would mean by such a nuestion).

Again, if the user really wanted to see all chemical element

analyses, he could say so explicitly. The comment T _nVv 15 HITS

DO YOU WANT TO SEE TI{_M? illustrates another featur_ of the

system. If the result of a reauest is more than 5 lines of

output, the svstem types this comment and gives the user the

option of listing them offline.

In addition to averaqina and listing, the system can also

compute ratios, count, and interpret some ananhoric references

and comparatives as indicated in the following examples:

i.ii

31*_=(HOW MANY BRECCIAS CONTAIN OLIVINE)
=lr$_=

PARS I NG

Qc, s
12263, 12774 FREE WORDS

815 CONSES

4.633 SECONDS

INTERPRETING

t514 CONSES

7*29 SECONDS

INTERPRETATIONS=

(FOR THE XI2 / (SEGL (NUHBER XI2 / (SEQ TYPECS) = (CONTAIN Xt2 (NPR*
XI4 / (OUOTE OLIV)) (OUOTE NIL)))) = T _ (PRINTOUT X12))

BBN LISP-IO
EXECUTING

(5)

03-09-72 ...

=IDle_

3'2_._.(WHAT ARE THEY)

PARS I NG

487 CONSES

2.755 SECONDS

INTERPRET I NG

1158 CONSES

4.R53 SECONDS

INTERPRETAT IONS =

(FOR EVERY XI2 / (SEO TYPECS) = (CONTAIN Xt2 (NPR, XI4 / (QUOTE OLIV))

(OUOTE NIL)) J (PRINTOUT XI2))

BSN LISP-tO

EXECUTING

SI_19

S10059

SI_065

SI_@67

S10_73

_}3-09-72 .. •

1.12

34.*(D0 ANY SAMPLES HAVE GREATER THAN 13 PERCENT ALUMINUM)

PARSING

981 CONSES

4o614 SECONDS

INTERPRETING

902 CONSES

3.566 SECONDS

INTERPRETATIONS=
(TEST (FOR SOME XI6 / (SE9 SAMPLES) | T J (CONTAIN e XI6 (NPR_ XI7

/ (OUOTE AL203)) (GREATERTHAN t3 PCT))))

BSN LISP-tO

EXECUT I NG

YES.

NO HITS

T

03-09-'72 •.,

35=_(WHAT ARE THOSE SAHPLES)

PARSING

607 CONSES

3.34 SECONDS
INTERPRETING

625 CONSES

2.38 SECONDS
INTERPRETATIONS=
(FOR EVERY XI5 / (SEQ SAMPLES) = (AND T (CONTAIN' XI6 (NPR_ XI7 /

(QUOTE AL203)) (GREATERTHAN 13 PCT))) J (PRINTOUT XI6))

BBN LISP-tO 03-Q9-72 ...

EXECUTING

C-C= 8
6Al4, 12546 FREE WORDS

I HAVE 10 HITS

DO YOU WANT TO SEE THEM? YES

$10005

$10063

$10_66

SI_067

SIO070

S10073

$10074

SI0075

$30084

Sl0085

1.13

3_*(LIST K / RB RATIOS FOR BRECCIAS)

ll=lt_

PARSING

662 CONSES

3°366 SECONDS

INTERPRETING

t642 CONSES

6.537 SECONDS

INTERPRETATIONSS
(DO (FOR GEN X9 / (SSUNION XIO / (SEQ TYPECS) _ T J (RATIO (QUOTE

K20) (QUOTE RB) XIR (NPR_ XlI / (QUOTE OVERALL)))) ¢ T I (PRINTOUT

xg)))

BSN LISP-tO 03-09-72 ,..
EXECUTING

I HAVE t7 HITS

DO YOU WANT TO SEE THEM? YES

4472,2222 $10018 D70-205)

(473°5884 510016 D70-242)

(518.2477 $10019 D70-218)

(345o4411 S10019 D70-256)

(463.3003 $t0021 D70-242)

(568.8333 $30046 D70-235)
4462.4408 $10046 D70-242)

(408,2933 $10048 D70-220)

(566ot499 St0056 D70-235)

(480.1913 $10059 D70-253)

(481.85 S10060 D70-235)

(457,9177 SI0060 D70-242)

(487o5714 S10060 D70-248)

(489.1304 S10061 D70-205)

(458.9973 S10065 D70-236)

(473,1551 $10065 D70-258)

(500.173 $10073 D70-215)

The system also understands restrictive relative clauses

and certain adjective modifiers (some of which cause restrictions

on the range of quantification of the noun phrase and some of

which change the interpretation of the head they modify). Rome

other modifiers (such as "lunar" modifvina samples) are known

to be redundant and are deliberately iqnored. The followinq

example contains all three:

1.14

_**(LIST MODALPLAG ANALYSES FOR LUNAR SAMPLES

THAT CONTAIN OLIV)

Wol=_

PARSING

1099 CONSES

4=346 SECONDS

INTERPRETKNG

2774 CONSES

12.33 SECONDS

INTERPRETATIONSz

(DO (FOR GEN X20 / (SSUNION Xl / (SEO SAMPLES) : (CONTAIN XI (NPR*

)(3 / (OUOTE OtIV)) (QUOTE NIL)) ; (DATALINE (WHQFILE XI) XI OVERALL

(NPR* X4 / (QUOTE PLAG)))) : T ; (PRINTOUT X20)))

BSN LISP-10

EXECUTING

03-09-72 ...

6(:: 30

510, 1022 FREE WORDS

I HAVE 13 HITS

DO YOU WANT TO SEE THEM? YES

1679 $10020 OVERALL PLAG 30,7

1680 21.4

1681 28.5

1682 24.6

2141 S!0022 15.6

3109 $10044 33.1

3110 34,1
4440 S10047 37,8

5796 $10058 37.1

8582 S10072 20,4

8583 18.5

9"311 S10084 22.0

9312 15.0

D70-159 0

D70-173 31

40

D70-305 0

D70-179

D70-154 41

42

8D70-159

D70-155

D70-173

D70-179

D70-186

D70-304

The structure of the formal ouerv language for accessino

the data base and the technioues for semantic interpretation

enable the user to make very explicit resuests with a wide

range of diversity within a natural framework. As a natural

consequence of the arrangement, it is possible for the user

to combine the basic predicates and functions of the retrieval

component in ways that were not specifically anticipated, to

ask questions about the system itself. For example, one can

make requests such as "List the phases.", "What are the major

elements?", "How many minerals are there?", etc. Although

1.15

these questions are not likely to be suf{icJentlv useful to

merit special effort to handle them, the,, fall out of the

mechanism for semantic interpretation in a natural way with

no additional effort required. If the s-stem knows how to

enumerate the possible phases for one purpose, it can do so

for other purposes as well. Furthermore, anything that the

system can enumerate, it can count. Thus, the fragmentation

of the retrieval operations into basic units of quantifications,

predicates, and functions provides a very flexible and powerful
facility for expressing requests.

In addition to the above operations, the system provides

facilities for requesting keyphrase document retrieval and for

updating and adding to the data base - both in natural English.

1.2.5 User Aids

In any natural language understanding system (even in people)

it will occasionally (or frequently) happen that the user will

be misunderstood. This is especially true for current computer

systems due to their limited linguistic capabilities. It is

therefore important that the system be able to give the user

some useful feedback when it fails to understand him so that

the user can adjust his requests to meet the limitations of

the system. LSNLIS has extremely limited capabilities in these

directions but we have implemented a small collection of user

aids to help the user when his request fails to be understood.

A sentence may fail to be understood by LSNLIS for any of

several reasons. First, it may fail to parse at all in the

syntactic component. This may be due to its being genuinely

ungrammatical, its use of a word in a sense not included in

the dictionary, its use of a totally unknown word, or due to

bugs in the system grammar or dictionary. The system notifies

the user when it encounters an unknown word and won't proceed

until the user either specifies a synonym (or a dictionary

1.16

entry for the new word if he knows how, which is unlikely) or

quits. Bugs in the grammar and dictionary would gradually
be detected and corrected in a working system and are thus not
a conceptual problem. However, we have no effective solution

in the current system for sentences that fail to parse when

all the words are known. This is detected by the system when
it has tried all of the alternative choices at its disposal and

has failed to find a parse. At this point it has no idea which

of its analysis paths was "closest" to being right. The best

it can do is tell you how far into the sentence it got in a

left-to-right parse, but this is not really very satisfactory.

If a sentence parses successfully, it may still fail to be

understood due to a failure in the semantic interpretation

component. When a request fails to interpret, it may be for
one of two reasons: There may be no semantic rules available

in the system for interpreting some node of the syntactic

structure, or none of the semantic rules given for interpreting

some word in context actually match. This latter situation

may be the result of incorrect parsing, for example, incorrect

modifier placement. The user, who may see the syntactic structure
by setting PPRINT to T, has the recourse of seeking an alterna-

tive parsing by saying to TALKER, GO(PARS_ .

When RULES fails to find any semantic rules to use in
interpreting a sentence node, it calls the function

SYNONYMS?. SYNONYMS?asks the user whether the head of the

current node is a synonym of one of its known words, of which

it was previously unaware. If the user can specify a synonym,
the head is marked appropriately, and RULES returns the semantic

rules to use in matching the node. The user is given the al-

ternative of quitting the interpretation if he is unable to

provide any usable synonyms. The nouns that the system under-
stands (i.e. the nouns with which a set of NRULES is associated)

are recorded on the list SEM-NOUNS,while the verbs which it

1.17

can understand as the head of an S node are kept on the list

SEM-VERBS. These lists should be updated when new words become

interpretable in the system via new NRULESand SRULES.

For example, one of the concepts the semantic interpreter

understands is that of an analysis. Consider a request for

** (W DETERMINATIONSIN TYPE B ROCKS)

The request will fail because RULES can find no NRULESto use

in matching the node headed by "determinations". "Determina-
tion" neither has NRULESof its own, nor is it marked as being

synonymous with any other word in the system. With USERFLAGon,

the function SYNONYMS?will solicit the user for usable synonyms

and should find out that "determination" is synonymous with

"analysis". From here, the interpretation will proceed without

further problem. (It is not necessary that the two words be

synonymous in all contexts, just so that when they are in the

same context, they are indeed synonymous.)

Even if RULES is able to provide a list of semantic rules to

use in interpreting a node, there is the possibility that none

of them will match. The templates in the rules specify one or

several possible structural descriptions for the node and also
semantic or lexical requirements that its components must meet

for the rule to apply. A rule may fail to match because some

structural component is missing, or because the semantic or

lexical requirements on some subnode fail. When MATCHER fails

to match any of the rules given it by RULES, it calls the

function NO-MATCHES. NO-MATCHES informs the user that the

system cannot understand his use of the word which heads the

node, within the context given by the node. The user is given

the option of quitting (at which point he may call for his re-

quest to be reparsed) or breaking and investigating the problem

for himself. (The latter would only be useful for a programmer

familiar with the operation of the semantic interpreter.)

1.18

It may also happen that the semantic interpreter does not

understand a user's request completely. This happens because

a semantic rule can match a node without using all of its con-

stituents. In this case, the semantic interpreter can produce

an interpretation, but it will be missing some of the information

specified in the request. Sometimes, this information is

stylistic: For example, the relative clause in the request "Are
there any analyses of Whitlockite in the samples that you have?"

Since the system takes "analyses of Whitlockite in the samples"
to refer only to the ones it knows about, the relative clause

"that you have" does not state any new information. If the

system were to tell the user that it could not understand "that

you have" as a modifier of the rest of the noun phrase, which it

does understand, the user should be able to tell the system to
ignore it.

However, sometimes the constitutents the Semantic Interpreter
has ignored are really necessary for the node's complete inter-

pretation. When this happens, the user should be informed of

the constituents being ignored and given the opportunity to

scrap the request and try again. For example, the system does

not have any referent for "microcrystalline inclusion" beyond that

of papers which have been written on the subject. In a request for

"Analyses of microcrystaline inclusions in olivines", the

Semantic Interpreter would otherwise ignore this unrecognizable

phrase and go on to interpret "Analysis in olivine", which would

certainly be incorrect. In the current system, the user is in-

formed whenever the Semantic Interpreter is about to ignore any

of three types of noun phrase modifier - adjective, prepositional
phrase, or relative clause, and he is asked whether it is safe

to ignore it. If he says no, then the request is aborted.

1.2.6 _ S_entences Handled

The following is a list of types of sentences handled
as of March 1972:

1.19

i•

o

3.

•

•

•

(Samples with silicon)

(Which rocks do not contain chromite and ulvospinel)

(Give me all lunar samples with magnetite)

(In which samples has apatite been identified)

(Which elements has someone found in breccias and in basalts)

(What is the specific activity of A126 in soil)

(Analyses of strontium in plagioclase)

(What are the plag analyses for breccias)

(Rare earth analyses for S10005)

(I need all chemical analyses of lunar soil)

(Chemical compositions of glassy materials)

(What is the composition of ilmenite in rock 10017)

(Has anyone analysed rock 10046 for major elements)

(What are the analyses of aluminum in rugs)

(Nickel content of opaques)

(Which samples are breccias)

(What are the igneous rocks)

(Are any of the samples volcanics)

(What type of rock is Si0003)

(What types of sample are there)

(What is the average concentration of olivine in breccias)

(What is the average analysis of olivine in breccias)

(What is the average olivine concentration)

(What is the average age of the basalts)

(What is the average potassium / rubidium ratio in basalts)

(In which breccias is the average concentration of titanium

greater than 6 percent)

(What is the average concentration of titanium in each breccia)

(What is the average concentration of tin in breccias)

(What is the mean analysis of iridium in type b rocks)

(I want the average composition for glasses in dust)

(What is the average plagioclase content in crystalline rocks)

(Modal plag analyses for Si0058)

(Modal olivine analyses)

(Give me the modal olivine analyses for Si0022)

(Give me all modal analyses of plag in lunar fines)

1.20

o

e

So

I0.

Ii.

(Which samples have greater than 20% modal plagioclase)

(Which samples are more than 20 percent plag)

(How many rocks have greater than 50 ppm nickel)

(Which samples contain more than 15 ppm barium in plag)

(How much titanium does Si0017 contain)

(How much nickel is in rock 10046)

(What is the number of phases in each sample)

(How many samples contain titanium)

(How many papers have been published on lunar material)

(How many different moon rocks do we have)

(Bulk chemistry of soil samples)

(Give me all references on fayalitic olivine)

(Of the type A rocks which is the oldest)

(Which rock is the oldest)

(Which is the oldest rock)

(The highest titanium concentration)

1.21

Chapter 2

THE ANALYSIS SYSTEM

2.1 Overview

In order to "understand" and respond correctly to
an English query, it is necessary not only to determine the
syntactic structure of the input sentence but also to determine

the "meaning" of the sentence to the system. This is determined

by both the syntactic structure of the sentence and semantic

information about the particular words which occur in it as

they are related to the data base. In the MSC application,

the meaning of a request is a procedure for computing its answer.

The I,SNLIS system represents this meaning in a powerful formal
request language (Woods, 1968) which is then executed in the

retrieval component to produce the answer to the request. The

system processes English queries in three successive phases:

(i) syntactic analysis usina heuristic information

to select the most "likely" parsinqs,

(ii) semantic interpretation to produce a formal

representation of the "meaning" of the _uer_, to

the system,

(iii} execution of this formal exnression in

the retrieval component to produce the ans_Ter to

the request.

The Fnqlish Lanauaqe preprocessor makes use of a

qeneral parsinq alqorithm for transition net_Jork arammars and

a qeneral rule-driven semantic interpretation mrocedure _Thich

2.1

were developed at Harvard University and BPL_ over a period

of years from 1967 to 1970, and which have been reported on

in tile literature (Woods, 1967, 1968, 1969, 1970). For this

contract, we have adapted these programs to the }_SC ap-

plication, developed a grammar for a larae subset of English,

developed a set of semantic interpretation rules for inter-

Dretina renuests for references, chemical anal_,ses, ratios, etc.

and constructed a larae dictionary of approximately 3500

words. In additinn, we have provided functions for setting

up and interro_atina a data base of chemical analysis data,

computing averages and ratios, and retrieving references

from inverted filps in response to Boolean combinations of

key words. The overall organization o_ the Fn_lish Language

Preprocessor is shown in Figure 2-1. In this chapter _Te _._ ii

be given a basic description of the oneratJnr_ of the major

components of the s,,stem; a complete and detailed description

of the individual functions which make up the system is

given in Annendix D.

2.2

-I PARSER I [SEMANTIC IINTERPRETER
RETRIEVALCOMPONENT

i

USER'S
QUERY

ANSWER

Figure 2-i. Organization of the

LSNLIS system

2.3

2.2 The Parsin_ S[stem

The MSC English preprocessor makes use of a general

parsing procedure for transition network grammars developed at

Harvard University and extended at Bolt, Beranek, and Newman

(Woods, 1969,'70,'72). This section gives a basic description of

the transition network grammar model and the operation of the

parsing system. (For more detail see Appendix D.) For more

detail on the philosophy and motivation of the transition network

grammar model, see the above cited references.

The transition network grammar model is an extension of

the notion of state transition diagram well-known to automata

theory. A transition network grammar consists of a network of

nodes with arcs connecting them. The nodes represent states of a

hypothetical parsing machine and the arcs connecting them represent

possible transitions and are labelled with the types of events in

the environment of the machine which permit the transitions. In

the case of a transition network grammar, the types of events are

the occurrences of words and phrases in the input string upon which

the grammar is operating.

The type of transition network grammar which we are using

for the MSC grammar is an augmented recursive transition network

grammar in which the arcs of the network include arbitrary conditions

for determining when their transitions are permitted, and arbitrary

structure-building actions which build up the syntactic representa-
J

tion of the sentences recognized. This model has only recently

been applied in the field of natural language processing, and it

provides a practically feasible means of obtaining the types of

analyses formerly obtainable only from laborious inversions of

transformations specified by a transformational grammar of the

2.4

Chomsky variety (Chomsky, 1965). The transition network model

permits analyses effectively equivalent to those of the transfor-

mational grammar, and it is the first parsing procedure to enable

such sophisticated linguistic principles to be embodied in a

practically feasible manner.

We say a state accepts a given string if that string

permits a sequence of transitions which lead from that state to

some state which is distinguished as a "final" state (in our

system, this is indicated by the presence of a POP arc which not

only marks the state as being a final state, but orders the alter-

native of accepting the string at that point with respect to the

other arcs which leave that state).

A recursive transition network grammar contains two types

of arcs--lexical arcs which correspond to transitions permitted by

single words, and recursion arcs (or PUSH arcs) which invok re-

cursive apDiications of the network to recognize a phrase or word

gouping of some kind. The most common type of the former is the

CAT arc which recognizes members of a specified syntactic category.

For example a CAT N arc permits a transition if the current word

in the input string is a word in the syntactic category N (for

noun). A PUSH NP/ arc permits a transition if the state NP/ can

recognize a noun phrase at the current spot in the input string.

In addition, there are JUMP arcs which perform actions without

advancing the input string (normally the input string is advanced

past the word or words which permit a transition) and a variety of

other special arc types. These are covered more fully in the

appendices.

2.5

Figure 2-2 gives a simple example of a transition net-

work grammar. It recognizes simple declarative and interrogative

sentences with noun phrases containing adjective modifiers and

prepositional phrases. Lexical arcs are indicated with lower case

labels, and PUSH arcs are indicated with upper case labels that

name the state to which control is to "push". It is easy to visu-

alize the range of acceptable sentences from inspection of the

transition network. To recognize the sentence, "Did the red barn

collapse," the network is started in state S. The first transition

is the au.___xtransition to state q2 permitted by the auxiliary "did".

From state q2 we see that we can get to state q3 if the next "thing"

in the input string is a NP. To ascertain if this is the case, we

call the state NP. From state NP we can follow the arc labeled

DET to state q6 because of the determiner "the". From here, the

adjective "red" causes a loop which returns to state q6' and the

subsequent noun "barn" causes a transition to state q7" Since state

q7 is a final state, it is possible to "pop up" from the NP computa-

tion and continue the computation of the top level S beginning in

state q3 which is at the end of the NP arc. From q3 the verb

"collapse" permits a transition to the state q4' and since this

state is final and "collapse" is the last word the string is accept-

ed as a sentence.

2.6

NP

aaj

\.,@

S is the start state

and are the final states
q4' q5' q7' qs' ql0

Figure 2-2. A Sample Transition Network

2.7

2.2.1 Structure buildin@ on the arcs

A parsing system must do more than just say whether or

not a given string is a sentence; it must also build up a repre-

sentation of the syntactic structure of the sentence. Such a

representation must exhibit the syntactic relationships among the

words and phrases of the sentence. In the augmented transition

network model, this is accomplished by the use of structure-

building actions on the arcs of the grammar, and by the association

of a form with each final state of the grammar which specifies how

to build the structural representation to be returned by that state.

This form is given by the label on the POP arc associated with that

state.

The structure-building actions as well as the arbitrary

conditions on the arcs operate on the contents of a set of re@isters

which are maintained at each level of recursive application of the

network and are set and reset by the actions on the arcs. A special

"current constituent pointer" * is also available for reference in

the conditions and actions. The structure-building form associated

with the POP arcs uses the contents of these registers to assemble

its structural representation. Each register may contain an arbi-

trary piece of tree structure, and may also be used to hold flags

for testing by the conditions on the arcs.

The basic structure building actions is that which

attaches the contents of specified existing registers at specially

marked points in a prototype tree fragment and puts the result into

2.8

a register. For example, the sentence structure:

S

NP

I
NPR

I
Chomsky

VP

V NP

I I
wrote NPR

Syntactic Structures

can be built by attaching the contents of registers NPREG, VPREG

and OBREG:

NPREG : NP VPREG : V OBREG : NP

I I I
NPR wrote NPR

I i
Chomsky Syntactic Structures

as leaves of the fragment:

S

+ VP

+ +

where the + signs indicate leaves that are to be replaced by

register contents.

The use of registers to hold pieces of sentence structure

allows considerable flexibility in the way that structures are built

up. The final structure of a construction does not need to be fixed

until the parser is ready to pop up with the total structure of the

construction. That is, the decision as to the final structure can

be postponed until all of the pieces of the structure have been found

in whatever order they occur. The relative order among the

2.9

pieces of structure contained in different registers is not decided

until the pieces are put together at the end, and this order need

not have anything to do with the order in which the pieces were
found. Moreover, even when one has made a tentative decision as

to the funciton of a particular part of the structure and assigned

it to a register accordingly, it is always possible to change one's

mind in the light of subsequent input and move that piece of struc-

ture to a different register. Nothing about the structure is

frozen until the moment that it is popped up to the higher level
computation which wanted it.

2.2.2 Parsing with a transition network grammar

A transition network grammar is essentially a non-deter-

ministic machine. That is, the transitions which are permissable

from a given state are not uniquely determined by the input string.

It is this characteristic of the model which mirrors the notion of

ambiguity in English sentences. A sentence is ambiguous if there

is more than one possible accepting path for that sentence. There

are a number of complexities forced on a natural language parser

by the fundamental ambiguity of English, and one of them is the need

to provide an algorithm which is capable of pursuing various possible

alternatives in the course of parsing. _he en_aeration of tiiese

alternatives is the major source of effort in most natural language

parsing systems. While it is not possible to avoid completely

this fundamental fact of life for natural language processing, the

techniques of the transition networh grammar go a long way toward

minimizing the problem. The factoring and merging of paths in the

network and the postponing of decisions until there is information

to make them tend to reduce the total number of alternatives which

in principle must be considered. Furthermore, the ordering of the

arcs leaving the states permits a selection of the "more likely"

2.10

alternatives first so that in many cases, the most likely parsing

is found while many of the other alternatives have not vet been

pursued. This permits a parsing system in which the parser uses
the ordering of the arcs and the complex conditions on the arcs

to try to determine the most likely parsing first and thereby avoid

a large part of the enumeration required by other parsing algorithms.
The basic necessity for dealing with a non-deterministic or enumer-

ative algorithm, however, remains.

2.2.3 Configurations

In simulating the operation of a nondeterministic machine

by a deterministic machine such as a real computer, it is necessary

to keep track of alternative configurations of the nondeterministic

machine. In the case of a transition network grammar a configuration

is determined by the current state, the current register contents,

and a stack of the states and register contents at all higher levels

in the analysis (since in general, the current state may be several

levels down in recursive calls to the network). Each recursive

call to the network adds another entry to the stack to contain the

state and registers associated with that level and then clears the

registers for the new level and sets the state to the state which

was named on the PUSH arc. In addition, the stack entries remember

the actions which remain to be performed on the PUSH arc after a

successful return from the PUSH.

In the parsing system which we have implemented, the

configuration is represented by a list consisting of the state, the

stack, a list of register contents, the contents of a special HOLD

list, and a PATH entry which records the history of how the current

state was reached from the initial state at the current level. The

stack is represented by a list whose elements (STACKELT's) record

2.11

the state, the register contents, the actions on the PUSH arc, and

the partial path entry for the computations at higher levels.

Register contents are kept on a list of alternating register names

and register values.

2.2.4 Organization of the parser

Parsing of a sentence begins by calling the function

PARSER with a string to be parsed. PARSER constructs an initial

configuration consisting of the start state (with empty registers

and stack) and then calls a function STEP to simulate the transitions

in the network. It calls a function LEXIC to perform the lexical

analysis of the input string--determining the next word, accessing

its dictionary entry, expanding contractions, compressing compound

expressions, making substitutions, etc. Thus PARSER provides the

basic overall control, while LEXIC interfaces the input string and

STEP performs the basic simulation of the transition network. Flow

charts of these basic functions are given in figures 2-3, 2-4, and

2-5.

2.2.5 Simulation of Nondeterminism

Although the parsing system we are using provides for

following alternative paths either in series or in parallel or in

combinations of the two, the MSC system as we have implemented it

makes use only of the sequential mechanism. In this mode, the arcs

leaving a state are considered in the order in which they occur, and

the first arc which can be followed is chosen. At this point, any

arcs remaining in the list, together with the current configuration

and the place in the input string, are combined into a list called

an ALTARC alternative and saved on an ALTS list of the parser to be

persued later if the current choice turns out not to be successful.

2.12

,r

GET NEXT

ELEMENT
FROM TRAIL

PARSER:

,p

APPLY STEP

TO ALL ACTIVE

CONFIGURATIONS

(ACFS)

NO

I ADVANCE

STRING ORTRAIL

DEPENDING ON
LEXMODE

N_ YES

I SETUP INITIAL]

CONFIGURATION

• (STATE S/)

YES_

N@yES

I CALL LEXIC]
TO GET

NEXT WORD

ERROR

COMMENT

RETURN NIL

J
APPLY STEPTO EACH ACF

RETURN

PARSINGS
AND ALTS

1,

CALL DETOUR
TO SELECT

ALTERNATIVE

ALTCONJ

ALTLEX

A LTCAT _

CALL STEP I
TO RESUME

ALTERNATIVE

NO

NO

I

SETUP CONFIG]
TO BE
RESUMED

Figure 2-3. The Function PARSER

2.13

LEXIC"

/_ vr.e]SETUP NEW LEX LRETUR N

ALTS? _ AND ANY NEW _ALTS

_ / IALTERNATIvEs I
NO_-T_

I LEX _ FIRST 1

ELEMENT OF

STRING

NO

CALL MORPH i

GENERATE _ RETURN
ALTCOMP ALTS

ALTERNATIVE

RETURN

NIL

UNPACK WORD

AND LOOK FOR

PUNCTUATION

YES

UBSTITUTES

MAKE SUBSTITUTION i

IN STRING

--GENERATE

ALTS FOR

"ERNATIVES

YES

CALL REQUESTDEF

TO GET DICTIONARY

ENTRY FROM USER

Figure

EXTRACTED?

NO

NO

PRINT ERROR

COMMENT

COMPOUNDS

YES

TRY TO MATCII

COMPOUNDS

--CHOOSE LONGEST
MATCH & GENERATE

ALTS _R ANY OTHERS

RETURN

ALTS

RETURN

NIL

2-4. The Function LEXIC

2.14

RETURN

ALTS

k

STEP:

,r

RESTORE

SAVED CONFIG,

ARC, ROOT,
AND FEATURES

ALTARC

IRESTORE J
SAVED CONFIG,
ARCS, AND LEX

YEs<
SETUP ACONFIG

AND SPREAD
COMPONENTS

_YES

YES

_NO

I GET ARCS FOR]
CURRENT STATE

l COMPUTE I
SYSCONJ ARC

IF NEEDED

YES

NEXT ARC

AND FEATURES

i
DECODE ARC- I

TYPE AND CHECK

CONDITIONS

,,, _'

I PERFORM ACTIONS

FOR ARC

ACCORDING TO

THE ARC TYPE

RETURN VCFS

(NEW ACFS}

TYPE

ERROR

COMMENT

COMPUTE ARCS
FROM LEXARCS

ENTRY

..m_RETURN
NIL

_ NO RETURN

NIL

YES

I ADD CONFIGTO 1

I LIST OF BLOCKS J

N_RETURN

VCFS

PRINT ERROR [
COMMENT

RETURN N_L

Figure 2-5. The Function STEP

2.15

We feel that this means of dealing with nondeterminism preserves

the potential for backtracking and trying other alternatives which

is essential for dealing with natural language ambiguity while

retaining most of the advantages of a deterministic algorithm. It

depends for its success, however, on the ability for selecting the

right parsing first or soon thereafter, (since otherwise all alter-
natives have to be enumerated and the advantages are lost). The

present grammar does a very good job of selecting a reasonable

parsing (if not the best one) in most cases, but there remains one

major area in which syntactic information alone (without semantic
information) has so far proven insufficient for making good choices

for the "most likely" parsing. This area is that of choosing the
scope for conjunctions.

2.2.6 Morphological analysis

One of the features of the current English processor

is a facility for morphological analysis of regularly inflected nouns

and verbs. This facility permits a single dictionary entry for

the root form of the word with a code which indicates the type of

regular inflection which the word undergoes. The system will then

automatically recognize all of the regularly inflected forms of

that root. This facility is performed by a function MORPH called by

LEXIC. In addition to inflectional analysis, _:ORPH is able to

recognize some items which appear to be contract numbers, hyphenated

adjective modifiers, integers, and times of day without their having

to be entered in the dictionary. Other types of morphological anal-

ysis are possible for "guessing" the parts of speech for words that

are unknown to the system, but this type of analysis has not been

incorporated into the current system.

2.16

2.3 The Semantic Interpreter

The semantic interpretation component of the L$_IL!H

system is an adaptation of the semantic interpretation proce-

dure presented in Woods (1967, 1968). It operates on a syntactic

structure or fragment of syntactic structure which has been constructed

by the parser and it assigns semantic interpretations to the nodes

of this structure to indicate the "meanings" of those constructions

to the system. The procedure is such that the interpretation of

nodes can be initiated in any order, but _ the interpretation of

a node requires the interpretation of a constituent node, then the

interpretation of that constituent node is performed before the

interpretation of the higher node is completed. Thus, it is possible

to perform the entire semantic interpretation by calling for the

interpretation of the top node (the sentence as a whole), and this

is the normal mode in which the interpreter is operated in the LSNI.IS

system.

2.3.1 Semantic Rules

In determining the meaning of a construction, two types of

information are used--syntactic information about sentence construc-

tion and semantic information about constituents. For example, in

interpreting the meaning of the sentence, "Choms}:y wrote Svntactic

Structures," it is both the syntactic structure of the sentence

(subject = Chomsky; verb = "write"; object = Syntactic Structures)

plus the semantic facts that Chomsky is a person and Syntactic

2.17

Structures is a boo}= that determine the interpretation (AUTITOR:

SYNTACTIC STRUCTURES CHOMSKY). In the Woods interpretation pro-

cedure, this information is embodied in semantic rules consisting

of patterns that determine whether a rule can aDDly, and actions

that specify how the semantic interpretation is to be constructed.

Syntactic information about a constrllction being inter-

preted is tested by tree fragments such as those indicated below:

S :NP-V S :V-OBJ S :PP

S S

NP _P VP

(1) v v _,_p
I

(21) (1) (2)

S UB JECT-VERB VE RB- OBJECT

S
I

VP

PmEP NP
I i

(i) (2)

P}_EPOS ITION-OBJFCT

MODIFYI_[C_ A VP

FraFrment S:NP-V matches a sentence if it has a subject and a verb

and also associates the numbers 1 and 2 with the subject noun phrase

and the verb respectively. The numbered nodes can be referred to

for checking semantic conditions and for specifying the interpre-

tation of the construction. Fragments in the system are named

mnemonically for readability.

The basic element of the Dattern part of a semantic rule

is a template consistinq of a tree fragment plus additional seman-

tic conditions on the numbered nodes of tbe fragment. For exammle ,

the template (S:NP-V (AND (MEM 1 PERSOn]) (EQU 2 W_ITE))) matches a

sentence if its subject is semantically marked as a nerson and its

verb is "write". The pattern part of a rule consists of a limited

2.18

Boolean combination of such templates and the action of the rule

specifies how the interpretation of the sentence is to be constructed

from the interpretations of the numbered nodes of the templates.

The left-hand side of a semantic rule consists of a list

of components, each of _ich may be either a single template, a

negated template (embedded in a NOT), or a disjunction (OR) of

templates. A component consisting of a simple template matches a

node of the syntax tree it its template does, and a NOT component

matches a node if its embedded template fails. An OR component

matches if any of its constituent templates match (including a

possible DEFAULT template at the end which matches if nothing else

does). A semantic rule matches a node if all of its components

match. In addition, in the process of matching a rule, a record

is maintained of the nodes of the syntax tree which match the num-

bered fragments in each of the components.

2.3.2 Right-hand Sides

The right hand sides (or actions) of semantic rules are

forms (or schemata) into which the interpretations of embedded

constituents are inserted before the form is evaluated to give the

semantic interpretation (or a part of it) which is to be attached

to a node. The expressions in the right-hand sides which indicate

the places where interpretations of embedded constituents are to

be inserted are indicated by lists (called a REF's) _vhich begin

with the atom # and contain one or twq numbers and an optional

"TYPEFLAG". The numbers indicate the node in the tree whose inter-

pretation is to be inserted by naming first the number of a compo-

nent of the rule and then the number of a node in a tree fragment

of that component. Thus the reference (#2 i) represents the inter-

pretation of the node that matches node 1 of 2nd component of the

2.19

rule. In addition, the single number _ can also be used to

reference the current node.

The TYPEFLAG element, if present, indicates how the node

is to be interpreted. (For example, in the MSC system there is a

distinction between interpreting a node as a topic description and

interpreting it for what it says.) Thus (# _ TOPIC) represents

the interpretation of the current node as a topic description.
There are a variety of types of interpretation used for various

purposes in the semantic interpretation rules of the system. The

absence of a specific TYPEFLAG in a REF indicates that the inter-

pretation is to be done in the normal mode for the type of node
which it matches. In this case, there is an alternative form

of the REF consisting of a dotted pair of the two numbers. Thus
(2 . I) is equivalent to (# 2 i).

As an example, consider the semantic rule:

(S :WRITE

(S:NP (14EM1 PERSON))

(S:V-OBJ (AI_D (MEM2 DOCUME_T)

--)(PRED (AUTHOR: (# 2 2)
(EQU i WRITE)))

(# 1 i))))

This rule says that if the sentence has a subject which

is a person, a verb "write", and an object which is a document,

then the meaning of the sentence is computed by substituting the

interpretations of the node numbered 1 in the first component

(# 1 i)and the node numbered 2 in the second com_)onent (# 2 2)

into the indicated places in the schema (AUTIIOR (# 2 2) (# 1 I))

and treating it as a predicate (PRED). (S:_[]_,ITE is the name

of the rule.)

2.20

2.3.3 Organization of Rules

The semantic rules for interpreting sentences are

usually governed by the verb of the sentence. That is to say

that out of the entire set of semantic rules, only a relatively

small number of them can possibly apply to a given sentence

because of the verb mentioned in the rule. For this reason, the

semantic rules can be indexed according to the verb (or verbs)

of sentences towhich they could apply and recorded in the diction-

ary entry for the verb. Each rule then characterizes a syntactic/

semantic environment in which the verb can occur and specifies its

interpretation in that environment. The templates of the rule

thus describe the necessary and sufficient constituents and

semantic restrictions in order for the verb to be meaningful.

There are also situations, however, in which the type of construc-

tion and the mode in,which it is being interpreted determine a set

of rules which does not depend on the head of the construction.

2.3.4 Multiple Matches

Since the templates of a rule may match a node in

several ways, and since several rules may simultaneously match a

single node, it is necessary to indicate how the interpretation

of a node is to be constructed in such a case. To provide this

information, the lists of rules which the interpreter uses--

whether taken from global lists or from the property lists of

heads of constructions--are not necessarily simple lists of rules,

but may be organized into rule groups with each group indicating

how (or whether) simultaneous matches by different rules are to

be combined. In addition, at the top level of such lists, the atom

NIL may be used as a "barrier" to indicate that by the time the

matching process has reached that point in the list it will proceed

further only if there have been no successful matches so far.

2.21

The mode for combining simultaneous matches at the top level of

this list is a default mode determined by TYPEFLAG and the type

of node. Possible modes are SPLIT (which keeps multiple matches

separate as semantic ambiguities), FAIL (which prohibits multiple
matches), AND (which combines multiple matches with an AND), and

OR (which combines multiple matches with an OR). For example,
a rule list of the form (A B NIL C (OR D E)) with default mode

AND indicates that if either of the rules A or B is successful,

then no further matches are tried (NIL is a barrier); otherwise,

rules C, D, and E are tried, and if both D and E match then the
results are OR'ed together, and if C matches together with D or

E or both, it is AND'ed to the results of the OR group.

The modes (SPLIT, FAIL, AND, and OR) also apply to

multiple matches of a single rule. A rule may either specify the
mode for multiple matches as its first element prior to the list

of components, or else it will be governed by the rule group mode

setting at the time it is matched.

2.3.5 Organization of the Semantic Interpreter

The overall operation of the semantic interpreter is

as follows: A top level routine calls the recursive function

INTERP with TYPEFLAG NIL looking at the top level of the parse

tree. Thereafter, INTERP attempts to match semantic rules against

the specified node of the tree, and the right-hand sides of matching

rules specify the interpretation to be given to the nodes. The

possibility of semantic ambiguity is recognized, and therefore the

routine INTERP produces a list of possible interpretations (usually

a singleton, however). Each interpretation consists of two parts--

a node interpretation (called the SEM of the node) and a quantifier

"collar" (called the QUANT of the node) which is to be returned to

2.22

the routine which called for the semantic interpretation of the

current node. Thus the result of a call to INTERP for a given

node P is a list of SF24-QUANT (or S-Q) pairs--one for each possible

interpretation of the node.

INTERP then calls a function HEAD to determine the

head of the construction which it is interpreting and a function

RULES to determine the list of semantic rules (depending on the

type of node and the value of TYPEFLAG) which it is to use to

interpret the construction. It then dispatches control to a

routine _ATCIIER. If no interpretations are found, then, depending

on the TYPEFLAG and various mode settings, INTERP either returns a

default interpretation T, goes into a break with a comment that

the node is uninterpretable (permitting a systems programmar to

debug rules), or returns NIL indicating that the node has no in-

terpretations for the indicated TYPEFLAG.

The function MATCHER calls a function MATCHGROUP to match

groups of semantic rules, and MATCHGROUP, in turn, calls the

function R_LATCH to match single rules. P_[ATCI! calls the function

TEMPMATCH to match templates in the left-hand side of the rule

and SI_ISUB to insert the interpretations of constituents into the

right-hand side of the rule and compute the resulting interpretation.

The relationships alnong these functions is indicated by the diagram

in Figure 2-6, and flowcharts for the routines INTEIIP and I_4ATCH

are given in figures 2-7 and 2-8.

INTERP HEAD

RULES

NATCIIER MATCIIGROUP }_IATCH TEMPMATCII

SEMSUB

Figure 2-6. Subroutine control map for the routine

INTERP

2.23

INTERP:

AATCHER
m

_YES

I RULELIST_"-- I
RULES (P,

TYPEFLAG)

ADD MATCHGROUP]
OF NEXT GROUP OF

RULES TO SEMLIST

NO

GROUPS

= RETURN
VALUE

BARRIER?

;EMLIST

EMPTY?

EMPTY ?

NO

p

TAG SEMLIST

ONTO TAGLIST

RETURN

VALUE

DEFAULTSEM RETURN

? VALUE

N_yE_ BREAK

< IHELP? _/-E-_I-FOR USER

,,/, t_ INTERACTION

INO

Figure 2-7. The Function INTERP

2.24

RMATCH:

RESET MODE

IF RULE SO

SPECIFIES

TEMPLATES
NO

ES

GET NEXT

TEMPLATE

NO

:MATCH

SUCCEED?

YES

RETURN

NIL YES

MPLATE ?

NO

TEMPLATE

MLIST

(ORMATCH-')

MLIST 4--

(TMATCH--)

RETURN.

NIL

MLIST

EMPT Y ?

ADD MLIST iTO KLIST

SEMLIST

MAPCONC OF

SEMSUB OVER

i KLIST
L

-_NO_ RETURN

_ VALUE

/ MODE _ RETURN

- VALUE

-_ yEO [PRINT

/ g_ _ ERROR

L COM '.ENT

F COMBINE I

| MATCHES |

L W,TH MODE]

$
RETURN

VALUE

YES_

BREAK _NO

RETURN

Figure 2-8.
The Function p_,IATCH

2.25

2.3.6 An Example

As an example of the operation of the semantic interpreter

consider the sentence:

(HOW MANY SAMPLES ARE THERE?)

which has the following syntactic structure assigned to it

by the grammar:

S Q

NP

AUX

VP

DET HOWMANY

N SAMPLE

NU PL

TNS PRESENT

V EXIST

Semantic interpretation begins with a call to INTERP looking at

the topmost S node with typeflag NIL. The head of the construction

is the verb EXIST, and the function RULES looking at an S node

with typeflag NIL returns the global list of rules PRERULES.

These rules look for such things as yes/no _uestion markers,

sentential negations, etc. In this case, a rule PR6 matches

and the right-hand side (PRED (# 0 SRULES)) specifies a call

to INTERP for the same node with typeflag SRULES.

RULES looking at an S node with typeflag SRULES returns

a list of semantic rules which it gets from the dictionary

entry for the head of the sentence (in this case EXIST), and

in this case a rule SS41 matches. Its right-hand side

(PRED (EXIST (i . i))) specifies a pattern into which the

interpretation of the node (i . i) is to be inserted (where

the matching node in question is the subject noun phrase).

The semantic interpreter now begins to look at the

subject noun phrase with typeflag NIL. In this case, RULES

is smart enough to detect the HOWMANY determiner and return

the single rule D:HOWMANY, which matches successfully. The

right-hand side of D:HOWMANY is:

(QUANT (FOR THE X / (# 0 NUMBER) : T ; (PRINTOUT X)))

2.26

which specifies that a quantifier is to be constructed by
substituting in the indicated place the interpretation of

this same node with typeflag NUMBER. (In the case of howmany

questions, the rule assumes that the syntactic structure above

containes only the dummy verb EXIST and therefore leaves no

opening in the quantifier for the later insertion of the higher

proposition.
RULES with typeflag NUMBERreturns only the single rule

D:NUMBER whose right-hand side is:
(SSUNIONF (SEQL (NUMBERX / (# 0 NRULES) : (# 0 RRULES)))) .

Here, the function SSUNIONF is a function which can grab

quantifiers like PRED but which would insert them inside the

NUMBER function instead of around the outside. SEQL is an

enumeration function which will show up in the final interpretation.

This rule calls for the interpretation of the NP node with

typeflags NRULES and RRULES which end up returning (SEQ SAMPLES)

and the default restriction T, respectively, w!th no cuantifiers

arising from either source. After the insertion of these values

and the evaluation of SSUNIONF the result of this call to INTERP

is (SEQL (NUMBER X15 / (SEQ SAMPLES) : T)) with no additic_ _i

quantifier.

The right-hand side of the rule D:IIO_45_NY now gets resumed

and after substitution and evaluation of the QUANT, the resulting

SEM is XI5 with an associated QUANT of:

(FOR TIE XI5 / (SEQL (NUMBER XI5 / (SEQ SAMPLES) : T)) : T ;

(PRINTOUT XI5))

(Normally such a QUANT would contain a marker DLT indicating

the place where the interpretation of the higher sentence

was to be inserted, but because of the special nature of

the howmany determiner this quantifier is completely self-

contained.) This quantifier is returned to the higher level S

interpreter whose PRED grabs it, and from there it ripples its

way to the top where it becomes the final interpretation.

2.27

2.4 The Petrieval Comnonent

2.4.1 The Function Execute

In the NASA LSNLIS, the retrieval comnonent resides in

a separate fork of the TENEX time-sharinG system which we will

call the lower fork or retrieval for]-. This fork is un(]er

the control of the languaqe processin_ fork.

When the semantic interpretation component has finished

constructin_ the interpretation of a request, it calls the

function EXECUTE with this interpretation as its arqument.

The function EXECUTE passes the interpretation to the retrie-

val fork bv means of a buffer file OBUF (for _uerv buffer) and

wakes UD the retrieval for]:. When the retrieval fork has

comnleted processing the muerv, it _,_ill]lave _.'ritten the

answer(s) onto a file HITFILE, and it _7ili then _rite the

number of hits into a buffer file _P,UV and return control to

the under fork. The function I<XFCUTF then prints out the

answer if there are fewer than 5 hits, or notifies the user

of the number of hits otherwise and as).s him _-hether he wishes

to see the answers. The function EXECUTE, thus serves as

the access port to the lower fork.

2.4.2 The Data Base Tables

The Data Base of the system consists o_ two t_,Des of

information--chemical analysis data on the lunar samnles, and

keyphrase indexinq of the publications concernin_ the samples.

Examples of these two types of data are qiven in fiqures 2-9

and 2-10.

2.28

; _INTABLE.;6 THU V-JAN-71 18:21AZ

SAMPLE PHASE
S19@_2 OVERALL

SI_3 OVERALL

CONSTIT. CONTENT UNIT CITATION TAG

AL26 12Z.@ DPM/KG D7Z-237

BE7 8_.Z

C IgO,z pph D7_-228 @

C056 _._ DPM/KG D7Z-237

C13 8,7999999 DEL D7_-22R Z

H ,g3gggg99 CC/G D7_-2_9

3 31.0 DPM/KG

K20 ,13251_999 PCT D7_-237 Z

N5 28._ DPM/KG

N 125.8 pPM D7_-23_

A22 51. DPM/KG D7_-237

S .I_699999 PCT D7_-22R

SC_6 8._ DpM/KG D70-237

53_ 3.5 DEL D7@-228 0

TH 1.92Z_@_ ppM D70-237

TI_ 2.5 DPM/KG

U ._8999999 ppM

AL20J IZ,_29999 PCT D7_-2_5 Z

9.636_99 D7_-208

1_,2_33_ D7Z-216

11._ D7Z-2_ Z

AL26 7U,_ DPM/_G D7_-237

75,_ D72-2_I

7a._ D7Z-26Z

BA 16_,Z ppM D7Z-2_3

I_6,_ D7_-215

22_.H D72-216

_E 1.5 D72-2@3

BE7 IZZ,_ DPM/_G D7_-237

CAO 11.129999 PCT D7_-2@5 9

11.61336_ D7_-216

11,@ D7Z-2_
CE _5.5 ppM D7_-215

37,_ D7Z-216

_I,__ D7_-22_

CO 15._ D7_-2Z3 0

C056 _3._ DPM/KG D78-237

C057 _],_ D7_-2_

CO6_ I._

CPX 5_,199999 *'* D7Z-15_

51,69qgg9 D7Z-173

CR20J ,27181999 PCT DTZ-203

,}@312999 D7_-216

.25999999 D70-2_ Z

Fiqure 2-9. A Sample of the Chemical Analysis Data

2.29

; PHRTABLE,;I WEb 16-DEC-7_ 2:01P_

((ABRASION) (D7_-ZBb U7_-_9b))

((ABSORBED GAMMA MADIATIO_) (D7_-@97))

((ABSORBED 3_5) Iw7_-_29))

((ABSOPPTION) (D7_-@2_ D7_-_68 D70-071 D70-072 D7M-097 D70-099

D70-I_8 D70-I_7 r70-I_2 D7_-126 D70-,31))

((ABSORPTION BAND) (D/@-Zb8 D7_-108 D70-113 D7_-122 D70-126

((ABSORPTION COEFfICIeNT) (D7_-071D70-117))

((ABSORPTION COEFfICIeNT MEASUREMENT) (D74-011 D70-117))

((ABSORPTION 9EAK) (D18-I@7))

((ABSORPTION SPeCtROMeTRy) (D70-136))

((ABSORPTION SPECTRUm) (D70-126 D70-,31D70-135))

((ABUNDANCE ANOMALY) (D78-020))

((ABYSSAL BASALT) (D7_-02_ D7@-027))

((ABYSSAL SUBALKALINE BASALT) (D70-027))

((ACCZLERATING POTEnTiAL) (D7@-057))

((ACCZSSORY CHBOMITE) (D70-@_6))

((ACCZSSOEY IL_EN_TE) (D70-@85 D70-@96))

((ACCESSORY OLIVINE) (D70-083))

((ACCESSORY PHASF) (D/0-_62 D70-@71))

((ACC_FTION) (D7@-010 D7Z-Z_2 D7@-055 D70-_87 D70-127))

((ACCRETION STAGE) (D/Z-Z_2 D7S-O,7 D70-066 D7_-887))

((ACC_ETIONARY LAPILLI) (D7@-_28 D70.085))

((ACCRETIONAR¥ RIn) (U7_-085))

((ACCaETIONAR_ S_MATI_RAPHY) (D7@-_87))

((ACCUMULATION SEQUENCE) (D7_-085))

((ACHONDRiTE) (D7_-_@3 D70-%06 D70-0_8 D70-012 D7_-015

D7_-0_3 D7_-@2_ D7_-_7 _70-_29 D70-832 D70-0_9 D7@-063

((ACHOND_ITE METEORiTe) (D7@-@12 D7@-0_))

((ACICULAH CRYSTAL _OUE) (D7_-Z71))

((ACICULAR ILnENITE) (D7_-_6@))

((ACICULAR PLAG_OULAS_) (D7Z-%6_))

((ACICULAR SILICOn) (u70-@6_))

((ACID BASALT) (n/I-@_9))

((ACID GLASS) (D7_-_5/))

((ACID HYD_OLZZAT_) (u7_-_35))

((ACID L_ACHING) (D7Z-Z5_))

((ACID SOLUTION) (D70-_32 D77-139 D7?-_Z))

((ACIDIC GLASS) (D7_-_69))

((ACTINIUM) (D7_-_21U7_-_88})

{(ACT£VATION CROSS SECTIOn) _D7_-127))

D70-107

D70-135))

D70-018 D70-022

D70-0_6 D70-122))

Figure 2-10. A Sample of the Keynhrase In_e_in_ Data

2.30

In the system, these two files are stored in different ways.

The keyphrase information is stored symbolically on a disk file

in essentially the form that appears in f_gure 2-10. Keyphrases

are looked up with a binary search of this file in order to

obtain the associated list of references. The chemical analysis

data on the other hand is stored in a compressed, bit-coded

form on a binary file which is windowed into an array in the

virtual core memory by the hardware page-mapping facilities of

TENEX. The use of this type of coding provides an extremely

compact and rapidly accessible representation. Detailed

descriptions of the data structures and retrieval functions

of the data base are included in Appendix F.

2.4.3 The Formal Query Language

The data base of the LSNLIS system is accessed by means of

a formal query language into which the input English requests

are translated by the language analysis component. Examples of

this language have already been seen in previous sections. The

language is essentially a generalization of the predicate

calculus which could either be manipulated as a symbolic

expression by a formal theorem prover to derive intensional

inferences or be executed directly on the data base to derive

extensional inferences. Only the latter, extensional inference

facility is used in the current LSNLIS.

2.31

The query language contains essentially three kinds of

constructions:

designators, which name objects or classes of objects

in the data base (including functionally

determined objects),

_ropositions, which are formed from predicates

with designators for arguments, and

commands, which take arguments and initiate actions.

For example, Si0046 is a designator for a particular sample,

OLIV is a designator for a certain mineral (Olivine), and

(CONTAIN S10046 OLIV) is a proposition formed by substituting

designators as arguments to the predicate CONTAIN. TEST is a

command function for testing the truth value of a proposition.

Thus, (TEST (CONTAIN SI0046 OLIV)) will answer yes or no depending

on whether sample S10046 contains Olivine. Similarly, PRINTOUT

is a command function which prints out a representation for a

designator given as its argument.

The major power and usefulness of the formal query language

comes from the use of a quantifier function FOR and special

enumeration functions for classes of data base objects to carry

out extensional quantification over the data base. The format

for a quantified proposition is:

(FOR QUANT X / CLASS : PX ; QX)

where QUANT is a type of quantifier (EACII, EVERY, SOME, THE,

numerical quantifiers, comparative quantifiers, etc.), X is

a variable of quantification, CLASS determines the class of

2.32

objects over which quantification is to range, PX specifies a

restriction on the range, and QX is the proposition or command

being quantified. (Both PX and QX may themselves be quantified

expressions.)

The specification of the CLASS over which quantification

is to range is performed in the system by special enumeration

functions which (in addition to whatever other parameters they

might have) take a running index argument which is used as a

restart pointer to keep track of the state of the enumeration.

Whenever FOR calls an enumeration function for a member of the

class, it gives it a restart pointer (initially NIL) and each

time the enumeration function returns a value it also returns

a new restart pointer to be used to get the next member.

Enumeration can terminate either by returning NIL indicating

that there are no more members or by returning a value and a

NIL restart pointer indicating that the current value is the

last one. (This latter can save one extra call to the enumeration

function if the information is available at the time the last

value is returned--e.g, for single valued functions.)

The enumeration function formulation of the quantifier

problem frees the FOR function from explicit dependence on the

structure of the data base--the values returned by the enumeration

function may be searched for in tables, computed dynamically,

or merely successively accessed from a precomputed list. A

general purpose enumeration function SEQ can be used to enumerate

any precomputed list, and a similar function SEQL can be used

2.33

to enumerate singletons. For example:

(FOR EVERY Xl / (SEQ TYPECS) : T ; (PRINTOUT Xl))

is an expression which will printout the sample numbers for

all of the samples which are type C rocks (i.e. breccias).

The bread and butter enumeration function for the chemical

analysis data base is the function DATALINE which takes as

arguments designators for a data file, a sample, a phase name,

and a constituent and enumerates the lines of the data file

which deal with the indicated sample/phase/constituent triple.

Other complex enumeration functions are _UMBER and AVERAGE

which take an argument format similar to the FOR function

and perform counting and averaging functions. Detailed

descriptions of these and other retrieval functions are given

in Appendix F and examples of the interpretations of various

requests are given in Appendix G.

2.34

Chapter 3

THE GRAMMAR

The translation of an English request into an

appropriate retrieval expression proceeds in three main

stages: first, the English sentence is converted into a

"canonical form" in which the syntactic relationships

holding between constituents are made explicit; next, the

canonical form, or parse, is mapped into a semantic

interpretation which highlights the logical connections

between terms; and finally, the semantic interpretation is

executed in the data base to produce the answer to the

query. In this section we discuss in some detail the first

stage of the translation process, the parsing of the input

string of English words.

3.1 MOTIVATION AND OVERVIEW

It is a well-known fact about natural languages that

sentences which have different words in different orders can

have essentially the same meanings, while superficially

similar sentences can have very different meaning; this

insight is the cornerstone of the transformational theory of

grammar (Chomsky, 1957, 1965). For example, active

sentences (i) have corresponding passive sentences (2) which

are virtually synonymous, and sentences with existential

3.1

"there" subjects (3) are synonymous

ordinary subjects (4):

(1)

(2)

(3)

(4)

On the other

to sentences with

We need some information.

Some information is needed by us.

There are many documents in the file.

Many documents are in the file.

hand, sentences (5) and (6) have similar

sequences of "parts-of-speech", but the syntactic and

logical relationships between the words are different:

(5) John is eager to please.

(6) John is easy to please.

In (5), John is to do the pleasing, whereas in (6) John is

to_ pleased by someone. Linguists account for these facts

by positing a form of _yntactic description more abstract

than Just a specification of the linear arrangements of

words in sentences. In brief, transformational grammarians

characterize the syntactic relationships In a sentence in

terms of a "deep structure" -- a structural description,

usually in the form of a tree with labeled nodes, from which

the string of words can be derived by applying a sequence of

formal rules called transformations (Chomsky, 1965). Thus

the gmilarity in meaning of actlves and their corresponding

passives is due to the fact that the sentences have the same

the different strings result from the

slightly different sequences of

Sentences with similar superficial

deep structure;

application of

transformations.

3.2

characteristics but different syntactic relationships, such

as (5) and (6), result from the application to different

deep structures of transformation sequences with similar

outputs. Finally, ambiguous sentences can be derived from

more than one deep structure, while ungrammatical

word-strlngs have no corresponding deep structure. In this

context, the major task in the syntactic analysis of an

input request may be seen as the problem of determining the

appropriate deep structure (s) for a given string of English

words.

Unfortunately, linguistic theory is not of much help

here. Transformational grammars are designed to enumerate

the class of possible deep structures (by using a

context-free phase-structure grammar) and then to generate

all and only the sentences of a language from the set of

deep structures. Very little has been said about how to

find the deep structure for a given string, and, in fact,

the few attempts at "reversing" the sequence of

transformational operations that have been made have not

been very successful (cf. Petrlck, 1965; Zwicky, et al.

1965). Thus, for the syntactic analysis component of the

LSNLIS English processor we have used an augmented recursive

transition

report and

difficulties

transformational

network parser, described elsewhere in this

in Woods (1970), which surmounts many of the

encountered in earlier efforts at

recognition. Our goal is still to map the

3.3

input request into a deep-structure-like representation.

A transition network grammar consists of a set of

states connected by a set of labelled directed arcs. The

label on an arc determines whether the transition can be

made, based on the current input word and the previous

analysis history of the input string, and also specifies a

set of actions to be executed if the transition is permitted

(section 2.2 of this report gives a detailed description of

the grammatical notation and the operation of the parser).

The sequence of transitions taken in the course of an

analysis reflects the superficial arrangement of words in

the string; the actions on the arcs are used to build up

sections of the deep-structure tree and hold them in

"registers" until they are combined into larger sections

and, eventually, into the complete representation of the

input string. Analysis of the input string thus proceeds

from left to right on two related levels: words in the

string are identified by arc transitions, and at the same

time, the deep-structure is being fashioned in the

registers.

3.4

d

! ! >

*, > /

rO_

o_

&

_J

3.5

o

0# a

t:

G

_m

I

©

0

0

o

.

w

_J

1 'OW_

Z

0..i

i

o

/

/

>

f

--_ z_

F

I d I_N f"

\

I Z

o..z.

>z

>

y---_

_ _.-__ /

!_.!I

I /dN I,Igfld

A
0

c_

bO

0

c

c ---
o

c

c
m c

o

I

3.6

i ,

i,' t:)

I

,-_

o

0 't_

_' 0

!

° Ii

_i °

3°7

The configuration of arcs and states in the grammar is

shown in Figure 3-1. Unless the order of the arcs is

explicitly indicated by numbers on the arcs, they are

ordered clockwise from the top of the state. The symbol &

on an arc indicates that there is a condition associated

with the arc which is not included in the figure. See the

grammar listing in Appendix B for the details of these

conditions.

The parses developed by the grammar resemble the

deep-structures described by Chomsky (1965), with some

elements borrowed from Stockwell et al. (1968) and some

included because

sample requests.

noun-phrase, an

tense, modality,

of special characteristics of the lunar

Briefly, a sentence consists of a subject

auxilliary-verb constituent specifying the

and aspect of the sentence, and a

verb-phrase containing the main verb, the direct and

indirect objects and predicate complements (if any), and

optional adverbial and prepositional-phrase modifiers. A

noun-phrase consists of an optional determiner and

adjectival modifiers, a head noun, and optional restrictive

and non-restrictive post-nominal modifiers. A precise

specification of the form of deep-structures is contained in

the listings of the grammar actions SBUILD, NPBUILD, and

DETBUILD in Appendix D and in the annotated listing of the

grammar itself (Appendix B). Below we will focus on the

grammatical strategies used to identify the various

3.8

constituents and not on the structures

placed.

in which they are

3.2 GENERALDESCRIPTION OF THE GRAMMATICALSTRATEGIES

In this section we discuss and illustrate the overall

organization of the grammar and indicate in some detail the

strategies used to deal with particular syntactic

constructions. A bird's eye view of the grammar was given

in Figure 3-1, in which states are represented by circles

enclosing the state name (for example, S/DCL) and arcs are

represented by arrows connecting the states. The arcs are

labelled in the diagram with their types (CAT, WRD, MEM,

VIR, JUMP etc.) and frequently, with their conditions also.

The actions on the arcs and the detailed specification of

complicated conditions may be found in the annotated listing

in Appendix B.

The parser allows state names to be arbitrary LISP

atoms, but we have adopted the convention that state-names

indicate the unit of the sentence being analyzed and

constituents of the unit already identified, separated by a

slash ("/"). Thus S/AUX signifies that the S-level of the

parse is being developed and that we have succeeded either

in finding an auxilliary verb or in establishing the fact

that the sentence has no auxilliary. The diagram also

expresses another convention: unless the arcs leaving a

3.9

state are

wise order

corresponds

the order

convention,

S/.

explicitly numbered in the diagram, the clock-

of arcs from the top of a state-clrcle

to the order of arcs in the grammar listing and

in which transitions are attempted. By

the initial state of the whole grammar is state

3.2.1 THE SENTENCELEVEL NETWORK

i. The basic strategy

With these conventions established, we can examine the

way in which the parser uses this grammar to analyze

sentences: Consider tile simple sentence (7):

(7) I need information.

The underlying structure of (7) is intuitively obvious,

given only a slight familiarity with high-school grammar.

The word I is the subject, NEED is the verb, and IHFORMATION

is me object. The parser begins by comparing the string to

the _ammar at state S/. The first word of the string (I)

cannot start an English question, so the predicate QSTAHT

fails, ruling out the first arc but permitting the third.

Since I is not PLEASE, the second arc is also excluded, and

so me third arc is the first transition. We jump to state

S/DCL, having established that the sentence is declarative.

Since a JUMP transition does not advance the input string,

we are still looking at I. At S/DCL we try to find the

subject noun-phrase, the word THERE in subject position, or

3.10

a subject complement. In

noun-phrase network (arc 2)

structure (8):

(8)

this case, the push to the

is successful, returning the

NP

I
PRO
1
I

We enter state S/NP with NEED as the current word and (8) in

the register SUBJ. Since NEED is the tensed verb, the CAT V

transition is permitted, and the actions save the tense

(present), the person-number code (X3SG = "anything except

third-person singular"), and the root form of the verb

(need) in the apropriate registers. We enter S/AUX looking

at the last word of the sentence. Since we have already

identified the subject and since its person and number agree

with those of the verb, we Jump to VP/V, and from there we

Jump to VP/HEAD. VP/HEAD is a landmark: whenever we reach

it, we have identified the main verb (the head of the verb

phrase) and the subject, and we can benin to look for

post-verbal constituents. In this case, since need is

transitive, we push for the object noun-phrase at arc 3, and

successfully return with the object, INFORMATION. This is

the end of the string, so we continue jumping through the

grammar from VP/NP to VP/VP and then to S/VP, from which we

pop the recovered deep structure:

3.11

S

DCL NP AUX VP

PRO TNS V NP

I present need DET N
I I

NIL information

This is the basic strategy for simple, active,

declarative, transitive sentences: at S/DCL, we have decided

that the sentence is declarative; at S/NP, we have the

subject; at S/AUX, we have the first (and only) verb, which

carries us through to VP/HEAD; at VP/NP we have the direct

object, and we then jump all the way to S/VP, where we pop

the completed parse. For intransitive sentences such as

(9),

(9) I went.

the jump arc (arc i) is taken from VP/H_AD instead of the

PUSH NP/arc, and the resulting structure does not have the

NP node in the VP.

From this basic strategy, more complicated sentences

are analyzed by varying and elaboratinK one or more segments

of the analysis path.

2. Auxiliary verbs

If the sentence has one or more auxiliary verbs

the main verb, as in (i0):

beside

3.12

(10) I could have been going.

the analysis path is embellished at state VP/V: the CAT V

arc at state S/VP picks up the modal verb COULDand stores

it _ the register MODALinstead of V. Then at state VP/V,

HAVE satisfies the CAT V arc, so the loop is taken, making

HAVE the main verb. Since BEEN also satisfies the CAT V

arc, the loop is taken again, and with HAVE in V and BEEN

marked as a past participle, PERFECTis added to the aspect

register and BE is placed in the V register, and we re-enter

state VP/V with GOING as the current word. Again, the CAT V

arc is permitted, GO is the main verb and PROGRESSIVEis

added to ASPECT. Finally we make the Jump to VP/HEAD,

having identified, as before, the main verb and the subject.

The rest of the analysis resembles that of the simple

intransitive (9), and the deep structure is similar except

that the node AUX has been expanded to (ll):

(ii)

AUX

TNS MODAL

PAST PERFECT PROGRESSIVE can

3. Passives

It was pointed out earlier that passive sentences (12)

have the same meanings as their corresponding actives (7).

We now show how the grammar maps them into the same deep

structure.

3.13

(12) Information is needed by me.

The same sequence of transitions is taken for the passive as

for the active, up to state VP/V, although the constituents

identified and saved in registers differ. Upon entering

state VP/V, the register SUBJ contained I and V contained

NEED for the active, while for the passive, SUBJ holds

INFORMATIONand BE is the main verb as in (13):

(13) Information is available

At VP/V the analyses diverge. For the active the current

word is INFORMATION, ruling out the CAT V loop, so the Jump

arc is taken to VP/HEAD, where the object is picked up. For

the passive, the current word is NEEDED, the past participle

of NEED. In this case, the CAT V arc is allowed, the

subject INFORMATION is placed on the hold list by the

conditional action, the indefinite noun-phrase SOMETHING is

placed in SUBJ, and BE is replaced by NEED in V. At this

point, we have identified the main verb, we have partially

undone our previous assignment of INFORMATION as the

subject, and the current input word is BY. AGFLAGhas been

set to indicate the possibility that the real subject is in

a by-phrase later on. We now make the Jump to VP/HEAD, but

the push for the object noun-phrase fails with BY. Instead,

the VIR NP arc removes INFORMATIONfrom the hold llst and

places it in the object register. None of the arcs at VP/NP

can deal with BY, so we Jump to VP/VP, where we take the WRD

BY transition to VP/AGT, since AGFLAGis set. Here we push

3.14

for a noun-phrase, find ME, and override the indefinite

subject SOMETHING that we set up at VP/V. We continue along

the basic analysis path and pop a structure at S/VP

identical to that for the active. If the by-phrase had not

been found in the sentence, the subject at this point would

still be the indefinite SOMETHING, which agrees with our

intuitions about the meaning of passivized sentences with

missing agents.

4. Questions

In English, questions introduce a number of variations

in the usual subject-verb-object sentence forms handled by

the basic strategy. The states emanating from S/Q, and also

some from S/, are designed to cover these possibilities. We

recognize three major types of questions, yes-no (14a),

questlon-pronouns and question-adverbs (14b and c), and

questlon-determiners (14d and e).

(14)

a. Does each type/A rock contain krypton?

b. What is the average krypton concentration
in type/A rocks?

c. How old is sample 10003?

d. Which rocks contain olivine?

e. How much olivine does each rock contain?

A yes-no question is characterised by the fact that a modal

or _xillary verb occurs before the subject. This may be at

3.15

the beginning of the sentence or after any number of fronted

prepositional phrases. The predicate QSTARTat state S/

precludes any other pre-subJect verb, so the Jump arc at S/Q

brings us to S/NP with only the register TYPE set and with

"be", "have" or a modal as the current word. We pick up the

verb in the ordinary way, and arrive at S/AUX with a verb

but no subject. Hence, we transfer to S/NO-SUBJ where, for

(14a), the PUSH NP/ arc is successful, returning "each

type/A rock". This agrees with the person-number code of

the verb, and so becomes the subject. From state VP/V, the

analysis is identical to the corresponding declarative, and

the structures are identical except that the question

structure has a type node "Q" instead of "DCL".

A questlon-pronoun or adverb is a WH-word that can

stand by itself as the object of interrogation, for example,

WHO, WHAT, WHEN, WHERE, WHY, and HOW. The root forms in the

dictionary for these items are complete NP or ADV

structures, and the CAT QWORD arc

structure (so that other parts

permanent damage to the dictionary).

can serve as either the subject or an object

sentence; these are saved in the register WHCuntil

makes a copy of this

of the grammar do not do

Most of the pronouns

of the

further

information determines whether they are to be moved into

SUBJ or held for the post-verb modifier arcs. The

question-adverbs, WHEN, WHERE, and HOW, and the pronoun WHOM

cannot serve as the subject, so they are held immediately,

3.16

to be picked up later by VIR arcs. If the questlon-adverb

is _ow", a detour is made to check if the following word is

an adjective or an adverb, as in (14c) above. If so, the

adjective or adverb is also held, to be picked up later by a

VIR arc. In any case, we enter state S/NP looking at the

first verb. If there is a potential subject in WHQ, and the

first verb is not an auxiliary or modal, then the WHQword

must be the subject, as in (15), so we rearrange the

registers.

(15) Who wants the information?

If the verb is a modal or auxiliary, then the WHQ word is

still a possible object, as in (14b), so we postpone a

decision and enter S/AUX without a subject. Here, we

transfer to S/NO-SUBJ, where for sentences such as (14b), we

push and recover the full noun-phrase subject. This means

that WHQcontains an object, so we add it to the hold-list.

For sentences such as (16),

(16) What is available?

where there is no noun-phrase in this position, we know at

last that the WHQmust be the subject, and the reFisters are

rearranged on the Jump arc. From VP/V, the analysis for

QWORD questions follows the basic strategy, except that VIR

NP or VIR ADV arcs are taken if the QWOPD structure was

held.

If an

construction,

adjective was held from

and the main verb is "be"

a "how<adjective>"

, in state VP/V, the

3.17

adjective replaces "be" as the main verb. Thus, the

structure built from "How old is Sample 10003?" is:

s Q
NP NPR SAMPLE

lOOO3
AUX TNS PRESENT

VP V ADJ OLD
ADV HOW

Finally, questions with question-determiners fall into

two groups, those associated with count nouns (with QDETs

"which", "what" and "how many") and those asociated with

mass nouns (with QDET "how much"). The first group are

analysed as questioned noun phrases, with the noun phrase

containing the

structure subject,

function• This

independent of

very similar

representation and makes it clear that the

phrase, in general, has the widest scope.

is analysed as:

question-determlner becoming the deep

its surface structure

is to a predicate calculus

questioned noun

For example,(14d)

DET WHQ
N ROCK

NU PL

S QREL
NP DET WHR

N ROCK

NU PL

TNS PRESENT

V CONTAIN

NP NPR OLIVINE

S NPQ
NP

AUX

VP

i e. "Which rocks such that they contain olivine (exist) o"

and (17) :

3.18

(17) In which phases does S10005 contain

is analysed as:

S NPQ
NP DET

N
NU
S

WHQ
PHASE

PL
QREL
NP NPR
AUX TNS
VP V

NP
PP

S10005
PRESENT

CONTAIN
NPR KRYPTON
PREP IN
NP DET WHR

N PHASE
NU PL

krypton?

i.e. "Which phases such that SI0005

those phases (exist)?"

contains krypton in

When a question-determiner like "what"

many" starts a sentence,

S/QDET for a full noun phrase

question-determiner. Since the NP/

recognize WH-words at the beginning of a

determiner must be

into the DET register.

that the remainder

, "which" or "how

it involves a push from state

structure with a

network does not

noun phrase, the

picked up at the S-level and sent down

Also sent down is a flag indicating

of the sentence, after the noun phrase

containing the question-determiner should be made a relative

clause of type QREL on that noun phrase.

noun phrase is returned, it is placed in

pop. This completes the analysis.

When the complete

WIIQ for S/NP to

The noun phrase containing a question-determlner can

also be in a prepositional phrase at the beginning of the

3.19

sentence. In this case, we push for a prepositional phrase

in state S/, but note at state PP/PREP whether the following

noun phrase begins with a questlon-determiner. If so, the

determiner is again sent down into the NP/ network and put

into the DET register. When the noun phrase is returned, it

is lifted up to the S/ network and put into the NP register

there. The prepositional phrase is also held, with the

feature FRONTED. States S/QPI and S/QP2 relativize the held

prepositional phrase (i.e. replace the determiner of the

embedded noun phrase with WHR), then push for a relative

clause of type QREL. The relativized prepositional phrase

is sent down into the relative clause as a verb _nrase

modifier (VMOD). When the relative clause is returned, it

is attached to the original noun phrase containing the

question-determiner, and the whole phrase is placed in the

WHQ register for S/NP to pop. This completes the analysis.

The second group of questions containing

question-determiners comprises those questions asking "how

much". They are analyzed along the lines of QWORD

questions, though, again, the question-determiner must be

picked up at the S-level and sent down into the NP network.

For example, (14e) is analyzed as:

3.20

Q
NP

AUX
VP

DET EACH
N ROCK
NU SG

TNS PRESENT
V CONTAIN
NP DET POSTART

N OLIVINE

NU SG

COMP ADV HOW
MUCH

The reason for using this analysis, rather than the

more elaborate one discussed previously for the other

question-determiners, is that the determiner "how much" does

not interact with 6ther determiners to cause scope problems.

This was one of the reasons for adopting the previous, more

elaborate analysis.

5. Existential THERE.

Sentences in which a form of the verb BE (or EXIST)

occurs often have counterparts in which the subject is

replaced by the word THERE and the real subject occurs after

the BE as in (18):

(18) There is a document.

If BE is in fact the main verb, the sentence is interpreted

as asserting the existence of its real subject. For

sentences of this type, the WRD THERE arc is taken at state

S/DCL, setting the register THERE but leavin_ SUBJ empty.

We are still allowed to Jump from S/AUX to VP/V, but we

cannot go on to VP/HEAD without the subject. Thus, we push

3.21

for a noun-phrase on the second arc from VP/V, having seen a

THERE-BE combination. The noun-phrase A DOCUMENT is

returned, and since it agrees with the verb's person-number

code, it becomes the subject. The rest of the analysis is

ordinary, except that when we finally do Jump to VP/HEAD, if

the main verb is still BE, we convert it to EXIST.

structure for (18) is:

Thus the

S DCL

NP DET A

N DOCUMENT

NU SG

AUX TNS PRESENT

VP V EXIST

Notice that this strategy allows the real subject to occur

at any position in the string of auxiliary verbs following

THERE, as long as the immediately preceding verb is BE or

EXIST. Thus the sentences in (19) can be parsed properly:

(19)

a.

b.

C.

There could be a document.

There could have been a document.

There could have been a document telling

about...

An existential THERE can also occur in the subject position

of a question; hence the WRD THERE arc at state S/NO-SUBJ.

If there is a WHQ in this situation, it becomes the subject.

Otherwise, the subject is found with the push arc from VP/V,

as _ove. If the WHQ resulted from a QDET question, the DO

arc at state S/THERE allows for the resumption of an

3.22

extraposed noun modifier, as in (20):

(20) How many men were there

document?

who wanted the

6. Do-support.

In English the verb DO can occur as a main verb (21a),

as a modal verb with the connotation of emphasis (21b), or

questions and negations with noas an auxiliary verb in

apparent meaning (21c-d).

(21)

a. They did it.

b. The sample does contain Plagioclase.

c. Did they want it?

d. The document does not contain the

information.

The cases exemplified in (21c-d) correspond to the general

rules that subjects and verbs can be inverted only if the

first verb is an auxiliary; if it is a regular main verb, DO

is inserted. Similarly a modal or auxiliary must precede

the sentential negation operator, and DO is inserted if

there is no ot_er possibility. In transformational theory,

the process of inserting DO is called DO-support.

The strategy for interpreting DO in the LSNLIS grammar

is as follows: At state S/NP, where the first verb is picked

up, DO is placed in the MODALregister, since it satisfies

3.23

the predicate MODAL. If another verb is not found (as in

21a)), then an action on the Jump arc to VP/HEAD moves DO

from MODALto V, making it the main verb.

In sentences where the subject and verb have been

inverted, the subject is sought at state S/NO-SUBJ. If the

PUSHNP/ arc is successful and if DO is in MODAL, it is

deleted and does not appear in the final parse. Likewise,

if the CAT NEG arc is taken at state S/AUX, a DO in MODALis

again removed. Thus semantically empty occurrences of DO

are correctly eliminated, while emphatic and main-verb DO's

are preserved.

7. Imperatives

The strategy for imperatives is basically simple. An

untensed (infinitive) verb beginning a sentence, optionally

preceded by PLEASE, marks

Imperatives usually have

auxiliary verbs, so the

the sentence as a command.

no overt subject and no modal or

arc from S/I_F sets up the

understood subject YOU and the tense-indicator PRESENT, and

terminates at VP/HEAD where post-verbal constituents are

analyzed in the normal way.

8. Objects and complements.

We have already seen in the basic strategy, how simple

transitive and intransitive sentences are analyzed.

3.24

Syntactic features on verbs can require other types of

predicate complement structures; the set of paths leading

from VP/I{EAD to VP/VP allow for the various possibilities,

and the annotated listing of the grammar should be consulted

to determine precisely how a given sentence will be

analyzed. Here we discuss a few common predicate complement

forms.

adjective

APPEAR:

(22)

The CAT ADJ arc (arc 2) from VP/V

to follow a copula verb

allows a predicate

such as BE, BECOME,

a. The concentration of krypton in SI0007 is

large.

b. The basalts are older than the breccias.

c. S10003 appears glassy under UV light.

The adjective is placed in the verb register, preceded by

ADJ and followed by its features. The features come from

both the adjective itself and the copula verb. For example,

the verbs constructed from the sentences in (22) would be:

(22')

a. (ADJ LARGE)

b. (ADJ OLD COMPARATIVE)

c. (ADJ GLASSY SEEMI}]G)

Predicate adjectives which form their inflections by

joining "more" and "most" to the uninflected form will also

3.25

be recognized in state VP/V on the MEM (MOREMOST) arc (arc

3). The uninflected adjective will be recognized in the

following state VP/COMP-ADJ, where the adjective will be

placed in the verb register, again preceded by ADJ and

followed by its features.

The paths for one- and two-word adjectives reconverge

at state VP/ADJ, where a variety of complements can be

recognized. For simple comparatives like (22b) above, the

word "than" causes one to move to state VP/ADJ-COMP, where a

simple noun phrase is sought. If found, it is made the

sentential object. (22b) is analysed as:

S DCL
NP DET THE

N BASALT
NU PL

AUX TNS PRESENT
VP V ADJ OLD CO_IPARATIVE

NP DET TIIE
N BRECCIA
NU PL

This path would not be successful if a sentence followed the

word "than", rather than just a noun phrase. In that case,

the sentence would be analysed as a sentential complement in

the _erb phrase. Other allowable complements recognized via

pushes from VP/ADJ are seen in such familiar sentences as

"John is easy to please" and "John is eager to please."

The arcs which push to the COMP/ network permit a

variety of complement sentence structures. Some verbs can

have as their direct object a complete sentence, often

3.26

preceded by the complementizer THAT:

(23.) I believe that the document is important.

Other verbs can have complements beginning with the

complementizers FOR or TO, (24) and arc 7 is taken for these

constructions.

(24)

a. The document seems to be important.

b. We arranged for the document to be

sent.

Indirect-direct object combinations are handled by a

sequence of arcs from VP/HEAD to VP/VP. In the simplest

case, the verb is followed by two noun phrases:

(25) Give me the information.

The first noun phrase is picked up by the PUS}I NP/ arc at

VP/HEAD, and our initial guess is that it is the direct

object, along the lines of (26).

(26) Give the information to me.

When we find the second noun-phrase on arc 4 from VP/NP, we

rearrange the registers, making the previous object the

object of a dative prepositional phrase, as

making the second noun-phrase

superficial difference between

removed. The grammar allows

in (26), and

the direct object. The

(25) and (26) are thus

for various combinations of

noun-phrases and sentential complements in the direct and

indirect object positions, but we shall not discuss the

3.27

PRECEDING PAGE BLANK NOT i'_f,!'_:!.

DCL_stead of Q.

Finally, in WH-questions where the question word is an

adverb (WHEN, HOW), the adverb is held and picked up on the

VIR ADV arc at state S/VP, where it is added to VMODS.

3.2.2 THE NOUN-PHRASE LEVEL

The second major component of the grammar is the

noun-phrase level (with state names beginning with NP/). It

is entered by pushes from the S-level and

prepositional-phrase (PP) states, and it also has recursive

calls to itself. We now describe some of the strategies

used in the analysis of noun-phrases.

i. The basic strategy

Consider the simple noun-phrase:

(28) the information

At state NP/ the determiner-article THE permits the CAT DET

transition to state NP/ART. From there a number of arcs

permitting optional constituents are by-passed by a series

of Jumps to state HP/DET. The CAT N arc picks up the noun

INFORMATION, carrying us to NP/N. We then Jump to ;_P/HEAD

and finally to NP/NP, from which we pop the completed

noun-phrase structure (29):

3.29
_. m _-

(29) NP PET TIIE

N INFORNAT I0]_

NU SG

The s_gnificant milestones in the analysis of a noun-phrase

are thus as follows: at i_P/DET, the series of determiner

constituents (a simple article in (28)) has been analyzed

and the appropriate structure has been built (by the

function DETBUILD) and saved in the register DET. At IJP/N a

potential head of the noun phrase has been found, while at

iJP/IIEAD the ultimate head has been determined. Finally, at

NP/NP, the complete noun-phrase has been recognized. As at

the S-level, more complicated noun-phrases are recovered by

variations and elaborations of this basic analysis path.

2. Determiner structures

In]]nglish it is possible to omit all constituent_{

before the i_ead of the noun-phrase. For exa_:_ol,_',atstract,

mass and prooer nouns, and plural fcrms of corf_mon nouns, do

not even require preceding art.icle_, and t_e jump arc from

_]P/ to _P/A_T is provided for suc!_ instance_;. On the ot_er

hand, noun- phrases pern_it more than just an artcile in the

determiner structure. Following the ana]ysi_ of Stockwell

et al. (1968), we recoi_nize ordinals and quantifiers (with

accompanyin_ partitives) as

structure of determiners.

(e._. 5 ppm, 7.2 percent)

part of the "post-article"

We also reco}_r_ize magnitudes

as part of this structure.

3.30

Ordinals indicate the position of the object denoted by the

noun-phrase in a sequence of objects (e.g. FIRST, LAST,

NEXT). The constraint is that ordinals precede quantifiers

and other prenominal modifiers, so that (30a) is acceptable

but (30b) is not:

(30)

a. the next five samples

b. *the five next samples

The CAT ORD arc from NP/ART picks up ordinals and saves them

in _e register POSTART.

Following an ordinal, a quantifier

(30a). The grammar

and a separate level

analysis. This level

is allowed as in

of quantifiers is fairly complicated,

(QUANT/) is provided for their

is called by the first arc leaving

NP/ORD. The QUANT/ states recognize simple cardinals,

magnitudes, and some comparative constructions (_dORE T}IA_],

LESS THAN); this is an area of the grammar that needs

further expansion. If found, the quantifier is added to the

ordinal structure in POSTART. If a post-article has been

identified, a partitive can follow which can indicate the

set from which the particular object was drawn (31a-b) or

(in the case of mass nouns) the mass term which it

quantifies (31c).

(31)

a. five of the samples

3.31

b. the last of the measurements

c. five pounds of lead

The partitive is usually introduced by OF, and the first arc

leaving NP/QUANT looks for an OF prepositional phrase. If

one is found, the head of the noun-phrase becomes the dummy

element O_JES, and the partitive phrase becomes the first

post-nomlnal modifier. With the head firmly decided, we

transfer to i_P/HEAD to look for other modifiers. For

certain quantifiers (e.g. ALL, BOTH) the OP can be missing;

the second arc at NP/QUAiiT takes care of this case.

Finally, the partitive structure can sometir_es be fronted to

the beginning of a sentence such as (32):

(32) Of tile documents, how many are about ...

where a loop at S/ puts it on the hold list for a VIR PP arc

to find. If there is no POSTAI_Tor if no partitive is

found, the jump to I]P/DET is taken, and !)!£L'!?UTLD puts the

contents of the DF,T and POSTA??fre_ister_ into the final

determiner structure.

3. Pre-nominal modifiers

After the determiner, a sequence of modifiers can occur

before a potential head is found. Thc:_e may include

adjectives, participial forms of verbs, and adverb-adjective

phrases. Arcs i, _$, 6, and 7 at state :]P/Di'f, Losether with

the arc:_ at i_?/ADV, pic_; up these constituents, savin_ them

in t!_e register ADJS. Examples of nou,n-nhrases with tLese

3.32

modifiers are given in (33):

(33) a. the lunar samples

b. a folded schist

c. an intriguing fact

d. a very large vesicle

4. Other potential heads

In the basic strategy, the head of the noun-phrase is a

noun, picked up on the CAT N arc from NP/DET to NP/N. Three

other arcs parallel the CAT N arc, permitting the head of

the noun phrase to be a title (arc 3) a proper noun (34a)

(arc 10) or a gerund (34b) (arc 8).

(34) a. sample 10026

b. John

c. the processing of information

In any case, the three arcs place the potential head

(embedded in a structure indicatin_ its type) in the

register N.

A pronoun may also be picked up as the head of the noun

phrase, as in (35).

(35) a.

b.

C.

The one which contains kryptonite

Either one of the phases

What is it for s10003

The pronoun may or may not be preceded by a determiner (such

3.33

as "the" "either" ", , some", "any"), and the CAT PRO arcs

from NP/ and NP/ART to NP/HEAD are there to recognize both

possibilities.

We have departed from Stockwell with regard to our

analysis of superlative adjectives. This is an area in

which we are still working, so the following, while it

represents the current state of the grar,_mar, is not

necessarily final.

Superlatives may function both as identifiers, (36a),

which point to a single specific thing, and as predicates,

(36b), like ordinary adjectives.

(36) a.

b.

The oldest type/A rock

Rocks w_:ich are most representative of the

Apennine Hegion.

When they function as identifiers, the_ point to the

one member of some set which satisfies so,,_<,requirements.

In (36a), the criteria require the one type/A rock to be

older than all the other type/A rocks in the set. We

recoEr_ize a superlative identifier by the definite

determiner "the" prece_lin,_" Jr, and analyze it as t!:e i_ead of

its o_n noun phrase. TI_{: remainder of ti:e ori_.ina!

structure noun-p_ ra_e is analyzed as a

construction on the s1_per!_tlve. This]nJicates

over

surface

partitive

the set

which the superlative ran_es. For example, (36a) is

parsed as :

3.34

NP DET THE
N OLD SUPERLATIVE
NU SG
PP PREP

NP

OF

DET THE

ADJ TYPE/A

N ROCK

NU PL

The JUMP NP/SUPERLATIVE and WRD (MORE MOST) arcs from NP/ART

catch one- and two-word inflected adjectives, respectively,

provided the adjective has been preceded by "the". (We also

treat determined comparatives as identifiers and analyze

them in the same way as superlative identifiers. For

example, "the older sample" is analyzed as "the older of the

samples". }{ere we still have implicit in the structure the

information that the set over which the comparative ranges

has exactly two members.

The above analysis of inflected adjectives as

specifiers is incomplete in the following sense: it does not

allow _r such plural constructions as:

(37) a. The oldest samples

b. The largest Ti02 concentrations

where the criteria for 'ioldest" and "largest" have been

changed so that more than one member of the set can meet

those criteria. It is as if we had scales for the different

properties and a threshold for each property beyond which

that property was considered "most" itself. For example,

"the oldest samples" might include all those samples older

than 3 billion years, while "the oldest buildings" might

3.35

include all those buildings over lO00 years. As can be seen

above, the threshold can be influenced by the set. We do

not understand this use of inflected adjectives well enough

yet to have incorporated it into the current LSIILIS system.

When an inflected adjective does not function as an

identifier, we treat is as an ordinar2 adjective with the

feature "comparative" or "superlative" as appropriate. This

also differs from Stockwell's analysis of superlatives,

which he considers part of the post-determiner structure.

The WRD (MORE MOST) arc and the CAT ADJ arc on NP/DET pick

up undetermined one- and two-word inflected adjectives.

When an inflected adjective occurs as a predicate

adjective, we make it the main verb of the sentence,

replacing the copula. In this case, the verb would get the

feature "comparative" or "superlative", plus any features

from the copula which it replaces. For example, (36b) is

parsed as:

NP DET NIL
IJ ROCK
IJU Pi,

S REL
NP

VP

DET WH

IJ ROCK

I_U PL

V ADJ

PP

RtiPRESI-II(TAT IVI{
SU PE_RLAT !VE

PREP OF
NP DET THE

ADJ APE tJIj!I_'F,

N RI_G!OIJ

NU SG

3.36

Inflected predicate adjectives are caught in state VP/V on

the CAT ADJ and MEM (MOREMOST) arcs. From this point on,

they follow the course of normal adjectives, looking for

verb phrase complements and modifiers.

There is a further set of words which may be picked up

as the head of a noun phrase. This set now includes the

words "average", "most", "least", "maximum" and "minimum",

but it seems reasonable that the ordinals should be included

in this set too. A member of this set is analyzed in a

similar fashion to the determined inflected adjectives. It

is _de the head of a deep structure noun phrase, while the

remainder of the original surface structure noun phrase is

put into a partitive construction following it. The

partitive indicates the set over which one of these function

words ranges. For example, "the average concentration of

iron in breccias" is analyzed as "the average of the

concentrations of iron in breccias".

The first CAT H arc from NP/HEAD catches words in the

aforementioned set and jumps to NP/AVG, where the partitive

is constructed. From NP/AVG, we continue with the reKular

NP processing at HP/HEAD.

in

5. Noun-noun modification

It is very often the case that the first potential head

a noun-phrase is not the real head. For example, nouns

3.37

and proper nouns can be modifiers on other heads (38):

(38) a. Olivine analysis

b. data processing

c. Apollo ll sample

When a potential head is first encountered at state i_[P/DET,

we make the tentative assumption that it is, in fact, the

head of the noun-phrase. At NP/I{, another potential head

implies that the previous head is actually a modifier on the

new h_ad; the loops at state NP/N (arcs i, 5, 6, 7, 8 and

i0) pick up the new head and add the old one to the list of

modifiers in ADJS. This process can be repeated several

times, as in (39). The CAT ADJ arc leading back to NP/DET

means that the series of potential-head-Podifiers can have

regular adjectives interspersed.

(39) a. _JAS[mission control operations staff

b. Apollo I] lunar samples

A possessive marker ('s) is also allowed after a

potential ileac_ has been found, and the CAU POSS arc at NP/N

picks it up, converts the previous head to a modifier, and

returns to _iP/DET. A gerund at th_s point might confirm

that tl_e noun-phrase is really a POSS-IiiG complement as in

(4o),

(40) John's winning of the race

and arc 9 at NP/DE% pushes into the S/ level to look for

this structure.

3.38

6. Relative clauses

The Jump to NP/HEAD is taken only when the head of the

noun phrase has been definitely determined. At this point a

variety of post-nomial modifiers is permitted. If we are

looking at a relative pronoun (41a) or a preposition

followed by a relative pronoun (41b), we know that there is

a relative clause, and we push to R/ to parse it.

(41) a. the samples which contain Olivine

b. the samples in which Olivine was found

Essentially, a relative clause is a sentence with a missing

noun phrase, with the head and number of the noun-phrase

that intuitively should fill the empty slot being the same

as those of the noun-phrase in which the relative clause

occurs. Thus we send down a copy of the noun-phrase to be

used in the analysis of the relative clause.

The states R/ and R/WH pick up the relative pronoun and

decide whether the copy of the noun-phrase sent down (in WH)

can be the subject of the relative clause. If so, the

noun-phrase is placed in SUBJ. Otherwise, it is held for

later use. We then enter the S/ network at S/NP to complete

the analysis. The patch through R/PREP handles the

preposition-relative pronoun clause.

The relative pronoun can also be left out of relative

clauses, and arcs 7 and 9, which push to R/NIL, handle such

"reduced" relative clauses. The reduced relative can begin

3.39

with a noun-phrase

adjective (42c).

(42) a.

b.

Co

(42a), a participial verb (42b), or an

the elements the sample contained

the elements contained in the sample

the information available

A noun-phrase is still sent down to WH, and its ultimate

destination is decided at R/NIL. Notice that there are two

arcs _nat push to R/NIL -- the arc usually taken is arc 9,

which follows the jump to NP/NP. This means that we will

not look for reduced relatives unelss we have failed on

other paths; this strate[y improves the efficiency of the

grammar, since R/NIL carl lead to lonF blind alleys.

However, this also implies that a reduced relative on a

noun-phrase in a prepositional-phrase witI_in another

noun-phrase would be attached to the fir_t noun-phrase in

the first parse. Thus in (43) the reduced relative would be

tried first as a modifier of I,IA_ instead of PA!_K:

(43) the man in the park the girl fre_luented

The TST R/!_!I, arc (arc 7), which calls the SUSPIq]ID

mechanism, is included to provide the correct analysis in

these cases. It can only be taken if a prepositional-phrase

(I_; T]_E PARK) has been found in the current noun-phrase.

Whenever we find a relative clause, we move to state

iiP/_, where additional full relatives are allowed until we

3.40

finally Jump to NP/NP.

7. Other post-nominal modifiers

The grammar handles other types of post-nominal

modifiers, including prepositional phrases, sentential

complements, and parenthetic comments. The PUSH PP/ loop

recognizes a sequence of prepositional-phrases and places

them, along with the relative clauses, in the register

NMODS. The register PPFLAG is set, which enables the TST

R/NIL arc and prohibits the normal PUSH R/NIL.

The PUSH FOR/}_P loop handles TO-completments, such as

(44),

(44) the way to do it

which can appear on a wide variety of nouns. The arcs which

push to the COMPL/ network can only be taken for certain

head nouns, those which take a THAT-complement (e.g. FACT,

STATEMENT, CLAI_) as in (45):

(_5) the fact that the documents are not available

Notice that THAT can also introduce a relative clause; the

difference between a relative clause and a THAT-complement

is that in the relative clause there is empty noun-phrase

slot to be filled. The THAT-complements are complete

sentences.

3.41

Other arcs leaving state NP/I_P allow for such

constructions as a colon following a noun-p_rase and a comma

either indicating the beginning of a conjoined sequence of

noun-phrases, or int roducinF, a transitive adverb

(ESPECIALLY, PARTICULARLY) and its followir_g noun-phrase.

The a_notated listing describes these arcs in detail.

3.42

k

Chapter 4

SEMANTIC INTERPRETATION STRATEGIES

4.1 Motivation

In Section 2.3, we presented an outline of the operation

of the semantic interpretation component. In this Chapter, we

will discuss the particular semantic strategies embodied in the

semantic rules and the way in which they produce semantic

interpretations from the syntactic structures being interpreted.

The semantic rules used in the system fall into two

classes. One class deals with grammatical constructions which

have real meaning to the system (determiners, verbal constructions

such as "give me", "I need", etc., and noun constructions such as

"references" etc.) The"ratios" ,"analyses", "average...",

other class deals with constructions whose meaning is not apparent

to the system, but which are instead to be interpreted as subject

indicators or other restrictions on the references to be retrieved.

The system generally attempts to interpret a sentence or request

in terms of its semantic rules for specific constructions, but if

it fails to find an interpretation of the sentence in terms of the

constructions which it knows, it types a comment to that effect

and attempts to interpret the request as a Boolean combination of

terms for retrieval from the keyphrase table. The set of semantic

rules which perform this Boolean interpretation are called

_c__rules and may either be invoked explicitly by constructions

such as "references on", "bibliography of", etc. or it mav_ be

invoked by default when a request fails to interpret normally.

4.1

4.2 The General Semantic Framework

The general semantic format cf the LSNLIS system is

essentially that described in Woods (1967, 1968). That is, the

retrieval component of the system consists of a set of primitive

commands, functions, and predicates which may be combined and

quantified to produce semantic interpretations which are essent-

ially retrieval programs for computing the truth values of pro-

positions or for carrying out commands. The task of the semantic

interpreter is to translate the parse tree of the sentence into

an expression in this formal query language which can then be

executed to retrieve or compute the answer.

4.3 Semantic Representation

The fundamental components of the retrieval component are

the primitive functions, commands, and p_-edicat_s which the machine

understands. These include specific retrieval functions for con-

cepts such as "average", "ratio", "analvsis", "mineral", "isotope",

etc. and general functions such as the _uantifiur function FOR

and the list enumeration function SEQ. %he typical retrieval

operation is based on the quantification of propositions and

commands _y quantifiers of the form:

(FOR QUANT X / CLASS : P (X) ; Q(X)) where Q[A_'_T is a quantifier

(EACH, EVERY, SO_IE, etc.), X is the variable of quantification,

CLASS is the class of objects over which the variable is to range,

P(X) is a restriction on this range (i.e. the only objects in

CLASS which are of interest are those for which P(X) is true), and

Q(x) is the proposition or command being quantified. The class of

objects is specified by a special enumeration function (such as

DATALINE) for enumerating the oi>jects in the class (e.g. by search-

ing the table) or bv the function SEQ which takes a list as an

argument and enunlerates the elements of that list. Typically,

Q(X) will be the cor:unand (PRINTOUT X) which prints out a represen-

tation of the object X on the teletype. For example, the expression

4.2

(FOR EVERY Xl / (SEQ PHASES) : T ; (PRINTOUT Xl)) is a retrieval

program which will print out the names of all of the members of

the list PI_SES (the list of all the names of phases of samples

which are recorded in the system's data base). This framework

for semantic representation provides a powerful formal language

for the expression of requests for the retrieval component.

4.4 Interpreting Sentence Nodes

The interpretation of a sentence node occurs in two phases

distinguished by the use of different values for TYPEFLAG. The

first phase, with TYPEFLAG NIL determines whether there are any

governing operators or commands such as NOT, TEST, etc., which

govern the sentence. It is essentially a preprocessing phase

prior to the actual examination of the sentence itself and

consists in matching rules from the global list PRERULES (which

is independent of the particular verb which governs the sentence).

Of these rules, S:AND and S:OR interpret conjoined sentences;

S:DCL deals with the interpretation of declarative sentences;

S:I_ interprets imperative sentences; and S:WHQ and S:YES/NO

deal with questions (the former with questions containing

question words such as "which" or "what" and the latter with

simple yes/no questions). S:NPU deals with noun-phrase utterances

(i.e. sentences which consist only of a single noun-phrase with

no verb). Other prerules interpret negative sentences and different

syntactic formats.

All of the PRERULES (with the exception of S:NPU and a few

others) specify the subsequent interpretation of the same node

with the TYPEFLAG SRULES (the exceptions call for the interpretation

of specific lower nodes). This second call for the interpretation

of the node begins the second phase of processing. In this case,

4.3

the rules to be tried are taken from the property list (i.e.

dictionary entry) of the head of the sentence (i.e. the verb) under

the property SRULES. Alternatively, if the verb does not itself

have any SRULES, but has as one of its semantic markers a word
which has SRULES on its property list, then the rules to be matched

will be taken from the list associated with the marker. For

example, the rule S:GIVE which interprets sentences of the form

"give me information on ..." is used for the interpretation of many
words which are synonyms of "give" in this context. This is indi-

cated by putting the semantic marker GIVE in their dictionary

entries, and therefore enabling them to use the SRULES from the

dictionary entry for the word "give".

4.5 Interpretin_ noun-phrases

The semantic rules which interpret sentences generally

require the interpretation of one or more noun phrases as

subconstituents of their interpretation. The rule S:NPU for

example, requires only the interpetation of its single constituent

noun phrase. Like the interpretation of sentences, the interpre-

tation of noun-phrases occurs in several phases. The first of

these, with NIL TYPEFLAG interprets the determiner structure of

the noun phrase to determine what type of quantifier is to govern

it. This phase consists of matching rules from the global list

DRULES. These rules examine the determiner and number of the noun

phrase and assign a basic quantifier structure. They also call

for the interpretations of the same node in two different modes--

NRULES and RRULES--for the other two phases. NRULES and RRULES

both are taken from the property list of the head of the noun-

phrase (i.e. the noun) or from the property lists of words which

occur in the list of markers for the head noun. NRULES interpret

the noun of the phrase and any arguments which it may require

(i.e. if it is a function); RRULES interpret any further restrictive

modifiers which may occur in the noun phrase. Modifiers which do

4.4

not match any RRULESare ignored, and relative clauses are handled

by a special mechanism which tags the relative pronoun of the

relative clause with the variable of quantification and calls for

its interpretation as a sentence.

4.6 Interpretin_ Topics

The above description of the interpretation of noun phrases

applies only to noun phrases which have direct and understandable

meaning to the system (e.g. "documents on ..." "analyses of ...",

etc.) Other noun phrases consist of topic descriptions and are

treated in an entirely different manner by the system. In the

latter case, a list TOPICRULES specifies a global list of rules

for translating syntax trees into Boolean combinations of key

phrases. These rules are grouped on TOPICRULES into AND and OR

groups in the way in which any resulting matches are to be combined.

Each topic rule corresponds to a particular type of key phrase which

may be present in a syntactic construction, and specifies in its

left-hand side the proper context and structure for the extraction

of that key phrase.

The list of TOPICRULES is used to interpret a noun phrase

instead of the usual sequence of DRULES, NRULES, and RRULES when-

ever the call to interpret the noun phrase is made with TYPEFLAG

TOPIC instead of TYPEFLAG NIL. S_antic rules of the ordinary

type are used to invoke this special type of interpretation when-

ever they locate a context which is definitely a topic. For

example, the rule R:DOC-ON interprets restrictions on a noun which

is semantically marked DOCUMENT that begin with the preposition

"on". It interprets such constructions as "data on X" by calling

for the interpretation of X with TYPEFLAG TOPIC and constructing

an instance of the ABOUT predicate indicating that the documents

in questions are about the topic X.

4.5

Since the data base of the system is quite limited in

scope, it is quite likely that the user may ask the system for

something which it does not understand. In this case, the

system will attempt to interpret the unknown t]ling as a topic
for which references are required. For this purpose, noun

phrases in the environment of a "give me ..." sentence or a noun-

phrase utterance are interpreted with a TYPEFI_G REFS? which

first tr_ys to interpret the noun phrase in the normal way, and

failing that, produces a call to the rule REFERENCESwhich prints

a comment to the user and interprets the noun phrase as a topic.

4.7 An Example

This sentence

by tile parser:

S NPU

NP

As an example of the semantic interpretation procedure,

consiuer the "sentence" (actually a noun-phrase utterance):

(ANALYSES OF S_MPLE SI0046 FOR IIYI)ROGE_,_)

produces the following tree structure %then processed

bET

HU

PP

PP

i'_IL

A[_ALY S I S

PL

PREP OF

NP DET

Np! _,

PRI]P FCR

NP DET

N

NU

N IL

SI_:[TPL]

SI0046

NIL

N IL

HYDROGEN

SG

4.6

The function INTERP does the interpretation. It first

attempts an interpretation of the whole sentence, S. Using the

list of rules, PRERULES, it finds that the sentence is a noun

phrase utterance (NPU) and should receive the interpretation

attached to its main noun phrase (NP). At this point, the right-
hand side of the rule (PRED (PRINTOUT (# 1 1 REFS?))) indicates

that the interpretation is a predicate (which may later be

quantified) governing the command PRINTOUT. It indicates that
the things to be printed out are to be determined by interpreting

the noun-phrase (# 1 i) with the typeflag REFS? (i.e. the noun

phrase may be either a topic description or a noun phrase whose
head is semantically interpretable. The function PRED will be exe-

cuted after the substitution of the interpretation on the noun-phrase

has l,_en made in the right-hand side, and it will grab any quan_i-

fiers which have been produced by the constituent interpretations.

The interpreter now begins the interpretation of the noun

phrase using the two rules REFRULE? and REFRULE (determined by

the TYPEFLAG REFS?). The first attempts the interpretation in the

normal mode beginning with the global list DRULES. Since the noun

phrase does have an interpretable head ("analysis") this inter-

pretation will succeed, and the rule REFRULE will never be tried.

As we mentioned, the DRULES are used to interpret the

determiner and number of the noun phrase and determine the type

of quantifier to be produced. This includes the case of no deter-

miner (determiner NIL). In this case, the special generic quantifier

GEN is produced, and placed in a buffer string for the function

PRED to grab. A variable of quantification (XI3) is assigned to the

noun phrase, and the interpreter is called with the TYPEFLAG NRULES

to interpret the noun.

4.7

4.7.1 Interpretin_ the Noun Phrase

In the dictionary, the word "analysis" contains the semantic

marker ANAIYSIS, and under the property NRULES it contains the list

(N :ANALYSIS N:MODAL-ANALYSIS). The two NRULES specify the inter-

pretations of the two types of analyses wbicll tile system recog-

nizes--the chemical analysis of solae element in some phase of a

sample, and the moaal analysis of some mineral in a sample. The

first rule applies when there is no adjective "modal" present in

the noun phrase, and the second applies when there is such an

adjective. The rule which will be applicable in this case is thus

N:ANALYSIS. This rule is shown in figure 4-1.

The rule N:ANALYSIS specifies constituents which must be

present (or absent) in a noun phrase in order for the rule to

match, and specifies the enumeration function which is to be used

for the quantification if the rule match is successful. First, it

specifies that the noun of t]_e noun phrase Lea memJuer (_IEM) of

the semantic class ANALYSIS (i.e. that its dictionary entry contain

the semantic marker ANALYSIS). This is true not only of the word

"analysis" itself, but also of other %;ords _hich can behave as

synonyms for "analysis" in this context (such as "concentration",

"composition", etc) Secondly, the rule specifies that there must

be no modifier "modal" (in this case, the rule N:MODAL-ANALYSIS

would apply). The next three components of the pattern part of

the rule specify the "arguments" of the head noun -- the sample,

phase, and constituent of interest. These may be specified

syntactically several ways -- either as an adjectival modifier,

a prepositional modifier, or by default. Thus, the constituent

of an analysis (the fifth component of the pattern) can be

specified by a prepositional phrase whose object is either an

element, an oxide, or an isotope; by an adjectival modifier

4.8

[N:ANALYSIS
(NP.N (HEM I ANALYSIS))
(NOT (NP.ADJ (EQU I MODAL)))
(OR _NP.PP (MFM 2 (SAMPLE ROCK)))

(NP.PP.PP (MEM 2 (SAMPLE ROCK)))
(NP.PP.PP,PP (HEM 2 (SAMPLE ROCK)))
(DEFAULT (2 NP (DET ALL)

(N SAMPLE)
(NU Pi))))

(OR {NP.PP (M_M 2 (PHASE MINERAL)))
{NP.PP.PP (HEM 2 (PHASE MINERAL)))
(NP.PP.PP,Pp (HEM 2 (PHASE MINERAL)))
(NP.ADJ#2 (HEM 2 (PHASE MINERAL)))
(NP.PP.ADJ-N (AND (OR (EQU 2 FINE)

(EQU 2 COARSE))

(HEM I DUST)))

(DFFAULT (2 NP (VPR OVERALL))))

(OR (NP.PP (HEM 2 (ELEMENT OXIDE ISOTOPE)))

(NP.PP.PP (M_M 2 (ELEMENT OXIDE ISOTOPE)))

(NP.PP.PP.PP (HEM 2 (ELEMENT OXIDE ISOTOPE)))

{NP.AOJ#2 (_EM 2 (ELEMENT OXIDE ISOTOPE)))

_D[FAULT (2 NP (DET EVERy)

(ADJ MAJOR)

(N ELEMENI)

(_ SG))))

fOP (NP.ADJ (_OU I CHEMICAL))

(DFF_ULT (I NP_ NIL)))

-> (SSUNIONF (DATALINE (WHQFILE (# 3 2 SSET)) (# 3 2 SSET)

(# _ 2) _# _ 2 SSIT)))]

'i,ure 4-i The NRULE N:ANALYS!S

4.9

which is one of the above three types; or by default in which
case quantification over the major elements is assumed. These

alternatives are represented in the semantic rule by a group
of templates OR'ed together with the default option at the end

of the OR. The default option applies if and only if none of

the other components of tile OR are satisfied.

The last component of the pattern specifies the optional

presence of the adjective "chemical". This is done so that when

the user requests "chemical analyses", the Semantic Interpreter

does not apologise for being unable to interpret "chemical" as

a modifier of "analysis". (See the section on User Aids, Chapter I,
for a discussion of the interpreter's reaction to things it cannot

"understand".) In the current data base, all analyses are basically

chemical ones, so "chemical" does not add anything to the inter-

pretation of "analysis". IIowever, the Semantic Interpreter should

know the difference between harmless optional modifiers and ones

which are important.

4.7.1.1 Prepositional Arguments

It would be nice if the !_arser provide_ a syntax tree in which

the various prepositional arguments of a noun phrase %¢ere attacheU

directly to the noun phrase where they n_ake sense semantically,

anu _;e have experimented else_Jht_re with a rudimentary facility for

using the infor1_ation in ti_e semantic rules to guide the parser

in the placen_ent of prepositional rF_odifiers. In the present

system, however, _Je _2ave taken the oppos;ite tack and provided

semantic rules which can locate t]_e nccessar/ !_repositional argu-

ments even when the parser has placed ti,em in t]_e _;ronq place.

Thus, the te_aplates which r_atch [_repositional modifiers in the

rule N:ANALYSIS mak_ use of the tree fragments _$P.PP,NP.PP. PP, and

NP.PP._T.V _. which can locate a l_repositional phrase one, two, or

three levels deep in a noun phrase.

4.10

Note that the templates which check prepositional phrases

make no checks on the preposition itself. The rule was originally

written this way as an expedient since there are many possible
combinations of prepositions which may occur in this context ana

their enumeration was tedious. However, the rule in this form

has been very successful--we have encountered no cases in which a

sentence was falsely interpreted because of this failure to check

the prepositions, and if no such cases arise, we will probably
leave the rule in its present form (since it is faster without the

additional checks).

4.7.1.2 The Right-Hand Side of the Rule

The right-hand side of the rule specifies the enumeration

function which is to be used to enumerate the analyses to which

the request refers. This will be a call to the data base function

DATALINE which takes arguments specifying the sample, phase, and

constituent of interest and enumerates the lines of the table

which correspond to the values of these arguments. The first

argument to DATALINE is a call to the function WHQFILE with the

sample as its argument. WHQFILE returns the name of the file

on which the analyses of the sample are located. This is so that

DATALINE will know which file to search for them. The rule

specifies the interpretation of node (# 3 2), with typeflag SSET,

as being the sample required. The final three arguments are

the sample, phase and constituent, respectively, and these

positions are to be filled respectively with the interpretations

of the nodes (# 3 2), (# 4 2) and (# 5 2). The typeflag SSET

with which the sample and constituent are to be interpreted

specifies the nodes to be interpreted as sets, if possible, and

not as quantified variables. Nodes can be interpreted as sets

if they are plural ("the samples", "all the halogens") or

determined by "every" ("every type A rock"). Otherwise, if any

of these argument positions receive direct proper noun interpre-

tations, then these interpretations are inserted directlv in

place of the expressions (# 3 2) etc., while if any of them are

_uantified by "each" ("each rare earth element"), their inter-

pretation will be the variable of quantification and the governing

quantifier will be passed up the tree to the sentence which

dominates the noun phrase.
4.11

4.7.1.3 Completing the NRULE Interpretation

In the particular case at hand, the third template will

match "of sample SI0046", the second will default to "overall",

and third will match "for Hydrogen". Thus, in order to complete

the interpretation of the node, the interpretations of the nodes

(# 3 2) (sample SI0046), (# 4 2) (overall), and (_ 5 2) (Hydrogen)

will be called for, producing the interpretations (NPR* Xl /

(QUOTE SI0046)), (QUOTE OVERALL), and (NPR* X2 / (QUOTE H)),

respectively. No quantifiers are produced by any of these sub-

interpretations. The result of the rule N:ANALYSIS is thus the

enumeration function:

(DATALINE (WHQFILE (NPR* Xl /(QUOTE SI0046))) (NPR* X1 /

(QUOTE SI0046)) (QUOTE OVERALL) (NPR* X2 / (QUOTE H)))

At this point, we return to the DRULL w_ich called for the

NRULE interpretation of this node and II_TERP begins another

interpretation of the same noue with tvpeflag RRULES to pick up

any possible modifiers. It again consults the property list of

the head noun ("analysis") and finds the RRULES, R:ANALYSIS-REF

and R:ANALYSIS-TAG. These rules allow for the optional restric-

tion of "analysis" by some tag or reference, e.g. "Analvses of

hydrogen in D70-246 with tag 2". In addition to these RRULES,

RULES sends the function _[ATCIIER the four universal RRULES, R:REL,

R:QREL, R:ADJ and R:PP to match against the node. These rules

see if there are any relative clauses, special relative clauses of

type QREL (see section 3.2.1.4, where these clauses are discussed),

unused adjectives or uninterpretted prepositional phrases. The

latter two rules are used to check that all adjectives and PP's

on the node have been interpreted or have contributed to the inter-

pretation of the node. If not, they inform the user of what the

Semantic Interpreter has ignored and ask him _'hat to do about it.

The former two rules call for the interpretation of any relative

clauses on the ncde, but follow the latter two rules if any of

them are uninterpretable.

4.12

In this case, none of the RRULESapply and the result of

the interpretation is the vacuous restriction T. Control again

returns to the DRULE looking at "analyses ..." and the quantifier:

(FOR GEN XI3 / (DATALINE (WHQFILE (NPR* Xl / (QUOTE SI0046)))

(NPR* Xl / (QUOTE SI0046)) (QUOTE OVERALL) (NPR* X2 / (QUOTE H)))

: T ; DLT)

is constructed. This quart!_ier is returned to the higher

sentence (the HP utterance) which called for the interpretation

of this node, and the semantic interpretation XI3 is attached

to the node.

4.7.2 Completin9 the Interpretation of the Noun-Phrase Utterance

Recall that the semantic rule which interpreted the top

level noun-phrase utterance was left pending with the right-hand

side (PRLD (PRINTOUT (_ 1 1 RLFS?))). The interpretation that

is returned by the call for the interpretation of (# 1 1 I_FS?)

is now XI3, and the quantifier governing this variable has been

placed in the quantifier string QUANTS which is being passed up

alonq the tree. After the substitution, the resulting expression

(PRED (PRINTOUT XI3)) is executed and results in the 'grabbing"

of the _uantifier(s) in the string QUANTS to produce the resulting

interpretation :

(FOR GEN XI3 / (DATALINE (WIIQFILE (NPR* X1 / (QUOTE SI0046)))

(HPR* Xl / (QUOTE SI0046))

(QUOTE OVLRALL)

(NPR* X2 / (QUOTE H))) : T ; (PRINTOUT XI3))

This expression is a retrieval program w_ich will range over the

set of table lines specified bv the call to DATALINE, binding XI3

to each in turn, and executing the expression (PRINTOUT X13) for

each such line. The result of the execution will be a printout

of the lines reporting overall hydrogen analyses of samnle Siu046.

4.13

4.8 Variations on the Example

The interpretation of sentences such as "give me all

analyses of sample S10046 for Hydrogen" are interpreted in exactly

the same manner as the preceding example except that instead of

the rule for noun phrase utterances, a rule S:GIVE (for various

paraphrases of "give me ...") will apply to produce the right-hand

side ([.RED (PRINTOUT (# 2 1 Pd2FS?))). The interpretation

of p_rases such as "ov<_rall IIydrogen analyses of SI0046", "Hydrogen

analyses of SI0046, "analyses of I{vdrogen_ in SI0046", etc. will

differ only in which components of the OR'ed templates of N:ANALYSIS

are chosen. The interpretations of phrases such as "analyses of

major elements in SI0046" will differ only in that additional

quantifiers will be passed up by tLe interpretation of the embedded

quantified noun phrases.

4.9 Anaphoric Reference

LSNLIS has been designed as a conversational system. Thus,

it must be prepared to deal with such a co_on conversational

device as anaphoric reference. Several examples of anaphoric

reference are shown in the following sets of requests.

(i) a. Give me all analyses of Sample 10046 for hydrogen.

b. Give me them for oxygen.

(2) a. Do any breccias contain aluminum?

b. Which are those breccias?

(3) a. Which coarse-grained rocks have been analysed for

cobalt?

b. Which ones have been analysed for strontium?

c. Which ones have been analysed for strontium too?

(4) a. How much Ti02 is in type B rocks?

b. How much silicon is in them?

The problem is in finding the referent of each anaphoric element:

e.g. "them" in (i) and (4), "those breccias" in (2) and "ones"

in (3).

The resolution of anaphoric reference is done in LSNLIS

4.14

by the Semantic Interpreter, and not by the Parser. Thus, we

will find pronouns like "one" and "they" and determiners like

"those" and "that" in the parse tree given the semantic inter-

preter. Whether it would be more efficient to let the Parser

resolve anaphoric reference itself, or let the two phases share
the burden is not yet clear, but we do not claim that the

strategies we use now should be in any way final. Much remains
to be done in this area.

Our main device for dealing with anaphoric reference makes

use of the "variables of quantification" mentioned earlier in the

chapter. During interpretation, every noun phrase that the
Semantic Interpreter attempts to interpret becomes associated

with a variable of quantification. These variables are very

much like Chomsky's referential indices. After the interpreta-

tion of the request is completed, each variable also becomes

associated with the interpretation of its noun phrase, as well as

its syntactic structure. This latter association is done by the
function SCOPEFINDER, called by INTERP. The above information

is stored on the property list of each variable, under the pro-

perties NODEand INTENSION, respectively. For example, the

following shows the property list of variable XI3, at the comple-
tion of our example request:

Ii_TENSION (GEN

(DET NIL)
(N ANALYSIS)

(PREP CF)
(NP (DET NIL)

(NPR SAI,:FLE

10040)

(NU sG)))
(PP (PREP FOR)

(NP (DET NIL)

(N HYDROGEN)

(Nu s0))))
(DATALINE (WHQFILE (i_PR* Xi /

(QUCTE S1o04b)))

(NPR* Xl / (QUO'IE S;<,,046))

(QUOTE OVERALL)

(NPR* X2 / (QUOTE H))) T)

4.15

Also at the completion of a request, the function SPROCadds

the variables used in its interpretation to the top of the list

ANTECEDANTS,for use in resolving future anaphoric reference.

We distinguish two types of anaphoric reference in LSNLIS,

partial anaphoric reference and complete anaphoric reference.

(lb.) is an example of partial anaphoric reference in that "them"

refers to only part of the previous noun phrase "analyses of

Sample 10046 for hydrogen", that is, to "analyses of Sample 10046".

The prepositional phrase "for oxygen" replaces "for hydrogen" in

the original request.

The remaining examples illustrate complete anaphoric refer-

ence of two types: anaphoric reference to the question set (i.e.

the phrase used in the request) and to the answer set (i.e. the

set of answers to the request). Example (3) illustrates these two

types best. "Ones" in (3b.) refers to the question set in (3a.)

"coarse-grained rocks", while "ones" in (3c.) refers to the answer

set in (3a.), "coarse-grained rocks which have been analysed for

cobalt". We take the word "too" in (3c.) as signalling this dif-

ference.

We shall give in what follows, a brief sketch of how the

Semantic Interpreter treats each type of anaphoric reference,

then go on to discuss its limitations in this area.

There are two semantic rules for interpreting anaphoric pro-

nouns and determiners, D:ANAPHORA and D:SEMI-ANAPHOR. The former

matches anaphoric pronouns and determiners which do not have any

prepositional phrase or relative clause modifiers, while the latter

matches those that do. The former represents complete anaphoric

reference, while the latter, partial anaphoric reference. There are

also two semantic rules for interpreting the pronoun "one", which

can be influenced by the words "too", "also", and "in addition"

in selecting the referent.

4.16

Consider example (ib) first. The right-hand side of the rule

S:GIVE applies to this request and calls for the interpretation of
the direct object of "give", in this case, "them in oxygen". We

proceed to interpret its determiner structure, and since anaphoric

pronouns are matched in the same cycle as determiners, we find that

the rule D:SEMI-ANAPHOR matches the node. This rule calls for the

application of the function SEMIANAPHOR to the entire node, as is.

What S_4IANAPHOR does is to search through the list of antecedant

noun phrases for one which has a syntactic and semantic structure

parallel to the given node. In this case, it looks for one with

a dependent prepositional phrase whose preposition is "of" and whose

head noun has the same markers as "oxygen", that is, (ELEMENT).

The noun phrase "analyses of sample 10046 for hydrogen" meets this

description. SF_IANAPHOR then replaces the prepositional phrase

"for hydrogen" with that "for oxygen", and returns, as the inter-

pretation of "them for oxygen", the interpretation of "analyses of

sample 10046 for oxygen".

S_IIANAPHOR, as it now stands, is only a first approximation

to the problem of resolving partial anaphoric reference. To begin

with, it is only applicable to anaphora with a single prepositional

phrase parallel to one belonging to its antecedant, as in the example

above. This also requires having correct modifier placement, a

stage which we have not yet reached. Follow-up reauests to (la)

which would be beyond the system's current capacity are ones like:

(5) a. Give me the oxygen ones.

b. How about them for oxygen.

c. Give me those that have been done for oxygen.

The following example shows the parsing and interpretation of

the two requests in example (i).

4.17

SENTENCE:
(GIVE ME ALL ANALYSESFOR HYDROGENIN SAMPLE 10_6)

PTIMING:

1262 CONSES

U,796 SECONDS

PARSINGS:

S IMP

NP PRO YOU

AUX TNS PRESENT

VP V GIVE

NP DET ALL

PRO ONES

NU SG/PL

PP PREP OF

NP DET NIL

N ANALYSIS

NU PL

PP PREP FOR

NP DET NIL

N HYDROGEN

NU SG

PP PREP IN

NP DET NIL

NPR SAMPLE

!I:JZ_6

NU SG

PP PREP TO

NP PRO I

N[! NIL

ITIMING:

2280 CONSE5

%.8@5 SECONDS

INTERPRETATIONS:

(DO (FOR EVERY XI_ / (DATALINE (WHQFILE (NPR, X15 / (QUOTE SI_Z_6)))

(NPR* ×15 / (QUOTE $IC_6)) (NPR, X16 / (QUOTE OVERALL)) (NPR, X17

/ (QUOTE H))) : T ; (PRINTOUT XI_)))

_L

4.18

SENTENCE:
{GIVE ME THEM FOR OXYGEN)
PTIMING:

664 CONSES

3,61 SECONDS

PARSINGS:

S IMP

NP PRO YOU

AUX TNS PRESENT

VP V GIVE

NP PRO THEY

NU PL

PP PREP ?OR

NP DET NIL

N OXYGEN

NU SG

PP P_EP TO

NP PRO I

NU NIL

ITIMING:

22aa CONSE$

9.3U5 SECCNDS

INTERPRETATIONS:

(DO (FOR GEN X19 / (DATALINE (WHQFILE (NPR, X20 / (QUOTE SI_0_6)))

(NPR, X2_ / (QUOTF $I@Z_6)) (NPR_ XI / (QUOTE OVERALL)) (NPR, X2 /

(QUOTE O))) : T 2 (PRINTOUT X19)))

Examples (2) and (4) illustrate basic complete anaphoric

reference. The semantic rule which handles this type of anaphoric

reference is D:ANAPHOR. We consider the analysis of (2b) first.

(Both requests in example (2) can be found as examples in Appendix G.)

Request (2b) is a "What(Which) is X?" question, which is

interpreted by rule SS30. This rule calls for the interpretation

of X, in this case "those breccias". The rule D:ANAPHOR recognizes

that "those" is anaphoric, and notes that the noun phrase is not

modified by either a prepositional phrase or relative clause modi-

fier, in which case, the rule D:SI31I-ANAPIIOR would apply. The

right hand side of D:ANAPHOR is a sequence of instructions to re-

solve the anaphorism. The first function called, ANTECEDANT, finds

the variable associated with the antecedant of "those breccias",

while the calls to ANTEQUANT construct the quantifier to be re-

turned as its interpretation. (Since the antecedant of "those

breccias" may be within the scope of some other quantifiers

(SCOPEVARS), they must also be included in the interpretation of

4.19

"those breccias".) The primary strategy used here in finding the
antecedant of "those breccias" is to look for one whose head noun

is also "breccia".

The antecedant of "those breccias" in example (2b) is "breccias

which contain aluminum". It is a general observation captured by
the Semantic Interpreter that a questioned existentially quanti-

fied sentence like (2a) implies an intensional noun phrase con-

taining among its restrictions those of the main verb of the re-

quest. Thus the interpretation of (2a) produces an intensional

noun phrase equivalent to "breccias which contain aluminum?" and

it is this intensional object which is the antecedant of "those"

breccias.

D:ANAPHOR is also used to resolve the anaphoric reference in

example (4b), but the strategy used by ANTECEDANT to find the ante-

cedant of "them" is slightly different. At the sentence level, the

rule S:BE-IN2 would match if the antecedant of "them" had the seman-

tic markers (SAMPLE). (The constitutents of S:BE-IN2 are a subject

noun phrase which is marked either ELEMENT, OXIDE, ISOTOPE, PHASE

or MINERAL, a verb whicll is either BE, OCCUR or EXIST, a preposi-

tional phrase whose head is marked SAMPLE, and another optional

prepositional phrase whose head is marked either P}_ASE or MINERAL.)

When the template (S.PP (AND (EQU 1 I_,i)(_IESI 2 (SAMPLE))) is matched

against the top S node, f_E_l calls the function ANTECEDANT to find

out if there is a possible antecedant for "them" which fits this

description, i.e. (ME_ 2 (SA_PLE)). ANTECEDA_T finds "type b

rocks" as a possible antecedant noun phrase for "them", which also

satisfies the requirement that its head have markers SAMPLE. ANTE-

CEDANT also records on TAGLIST that the antecedant of "them" is

X3, the variable associated with the noun phrase "type b rocks".

(Where this strategy differs from the one used for finding the

antecedant of "those breccias" is in using semantic markers, rather

than a specific word like "breccias" as a requirement on the head

of the antecedant.) When S:BE-IN2 later calls for the interpretation

of the phrase "in them", D:ANAPHOR calls ANTECEDANT which picks off

the TAGLIST the antecedant for "them" it found previously.

ANTEQUANT then constructs the proper quantifier for it. The following

4.20

example illustrates the parsing and interpretation of the two

requests in example (4) .

SENTENCE:

(HOW MUCH TITANIUM IS IN TYPE B ROCKS)

PTIMING:

1315 CONSES

7.655 SECCNDS

PARSINGS:

sQ
NP DET POSTART COMP ADV HOW

MUCH

N TITANIUM

NU SG

AUX TNS PRESENT

Vp V BE

PP PPEP IN

NP DET NIL

ADJ TYPE/B

N ROCK

NU PL

ITIMING:

_889 CONSES

a.595 SECONDS

INTErPrETATIONS:

(FOR GEN X3 / (SEQ TYPEBS) : T ; (CONTAIN' X3 (NPR, X_ / (QUOTE TI02))

(QUOTE NIL) (HOW)))

SENTENCE:

(HOW MUCH SILICON IS IN THEM)

PTIMINS:

Z7_ COI_SEB

6.282 SEC-NDS

PASSINGS:

s O
NP DET PCSTART COMP ADV HOW

MUCH

N SILICON

Nil SG

AUX TN_ PRESENT

VP v B_

PP P?EP IN

NP PRO THEY

NT_ PL

ITIMINS:

_9q CO_SES

_.227 SEC_NDS

INTE_P_?TATIONS:

(FOR GF>I X3 / (s_O TYPEB_) : T ; (CONTAIN' X3 (N_R+ X6 / (QUOTE SI02))

{_UOTE NIL] (HO_)))

4.21

Example (3) illustrates anaphoric reference with the word

"ones". "One" and "ones" are peculiar anaphoric pronouns in that

they are influenced by the words "too", "also", and "in-addition"

in establishing their antecedants. "Them" in examples (i) and (4),

on the other hand, is not so influenced. The antecedant of "them"

does not change, whether one says "Give me them for oxygen." or

"Give me them for oxygen too.". As mentioned previously, when

"too" and similar words occur with "ones" or "one", the pronoun's

antecedant is the answer set, while without "too", its antecedant

is the question set. "One" and "ones" are also peculiar pronouns

in that they can occur with determiners, which must also be con-

sidered in forming their interpretations: "which ones" has a dif-

ferent interpretation from "the ones".

A noun phrase whose head is the anaphoric pronoun "one" or

"ones" is interpreted by the normal DRULES to find its determiner
structure. The rules N:ONE and R:ONE are then used to interpret

the class of the noun phrase and its restrictions. (It should be

pointed out here that "one" and "ones" can also be used in a non-

anaphoric, partitive sense, e.g. "Which one of the boys", and in
this case, the rules N:ONEOF and R:OI_EOFare used to get the class

and restrictions of the noun phrase from the head of the partitive

construction.)

In the interpretation of example (3b), S:NPQ identifies the

parse tree as a questioned noun phrase, and calls for its interpre-

tation with typeflag REFS? We try to internret it normally, and

not as a topic, and in doing so, match the DRULED:WHQ-PL to the

node. D:WHQ-PL calls for the class and restrictions in making up

its interpretation, and the rules _:ONE and R:ONE are invoked.

The right-hand side of N:ONE calls A_JTECEDAI_Tto find the ante-
cedant of "one" and return its associated variable. ANTEQUANT

again brings into the interpretation all the _uantifiers in whose

scope tile antecedant of "ones" was located. The function NEWCLASS

then adds into the interpretation the class from the antecedant of

4.22

"ones" picked off its INTENSION. The rule R:ONE returns all the
restrictions on the antecedant of "ones" which did not come from

the verb phrase - in this case none. If the word "too" or one

like it were present, all the restrictions on the antecedant,

including those from the verb phrase, would be returned by NEWPX.

The parsing and interpretation of examples (3a) and (3b) is as
follows:

SENTENCE:
(WHICH COARSEGRAINED IGNEOUSROCKSHAVE BEEN ANALYZEDFOR COBALT)
PTIMING:
88_ CONSES
5.647 SEC_NDS
PARSINGS:
S NPQ

NP DET WHICHQ

ADJ COARSE

ADJ GRAINED

ADJ IONEOUS

N ROC_

NU PL

S QREL

NP PRO SOMETHING

AUX TNS PRESENT

PEPFECT

vp V ANALYZE

NP OET WIIR

N _OCK

NU Pi

PP P_EP FOR

NP DET NIL

N COBALT

NU SG

ITI_INg:

96_ CORSES

7.83u SECONDS

INTERPRETATIONS:

CFOR EVERY X13 / (SEQ TYPEBS) : (AND (DATALINE (WHQFILE X13) X13 OVERALL

(NPR- X _5 / (QUOTE CO))) (AND T T)) ; (pRINTOUT X13))

,L

4.23

SENTENCE:
(WHICH ONES HAVE BEEN ANALYZEDFOR STRONTIUM)
PTIMING:
73_ CONSES

2.899 SEC[iNDS

PARSINGS:

S NPQ

NP DET WHICHQ

PRO ONE

NU PL

S QREL

NP PRO SOMETHING

AUX TNS PRESENT

PERFECT

VP V ANALYZE

NP DET WHR

PRO ONE

NU PL

Pp PREP FOR

NP DET NIL

N STRONTIUM

NU SG

ITIMING:

581CONSES

7._31SECqNDS

INTERPRETATIONS:

(FOR EVERY X16 / (S_Q TYPEBS) : (AND (AND T T) (DATALINE (WHQFILE

X16) X16 :VERA_L (NPR, X_8 / (QUOTE SR)))) ; (PRINTOUT X16))

Our present anaphorism facility is still very rudimentary

and contains a nuntber of deficiencies _:hieh will have to be recti-

fied before it can be extended. First, because the intension of a

variable and its associated noun phrase is not computed until after

the interpretation of the entire request, intra-sentence anaphorism

like:

(6) Is the average titanium concentration in SI0046

larger than that in SI0047?

cannot be interpreted correctly, if at all.

Secondly, we do not save enough of the things in the ev-

vironment which can serve as antecedants. Consider for example the

interchange:

(7) User: Which samples contain magnesittm in glass?

LSNLIS: --SI0047

USER: Does it contain zirconium too?

To resolve the anaphorism in the above exchange, we should save the

information that SI0047 is available as an antecedant for the second

question. The current system does not do this. It resolves the

4.24

anaphorism in a make-shift manner by not insisting on number agree-

ment between anaphorism and antecedant. It takes "samples which

contain magnesium in glass as the antecedant for "it", and pro-

duces an interpretation which tests whether each sample which
contains the above also contains zirconium. That the retrieval

component has already found that S10047 is the only sample meeting

the above description is ignored by the Semantic Interpreter.

Both of the above problems require the provision of an

appropriately varying dynamic environment of possible candidates
for antecedants which extends not only between sentences, but

within the processing of a single sentence, and includes entities

mentioned by both participants in the dialog.

In addition to the above limitations of the current system's

"possible antecedant environment", there are many other aspects
of the anaphoric reference problem which we have not even begun to

investigate. For example, our attempts at partial anaphoric ref-

erence have just begun to scratch the surface; much more work is
reauired in this area. Other aspects of anaphorism that have not

been incorporated in the system, even on a limited scale, include
treatment of words like "other" as anaphoric expressions. For

example, the system should be able to find the referent of

phrases such as "other rocks" in the following exchanges:

(8) Does SI0017 contain magnesium in glass?
Do other rocks contain it?

(9) Which basalts contain aluminum?
Which other rocks contain it?

"Other rocks" in (8) refers to ones other than SI0017. "Other

rocks" in (9) refers to ones other than the basalts (type A

rocks).

Anaphorism is a very interesting and subtle problem,
but a crucial one to conveient man-machine communication. More

research in this area is required.

4.25

Chapter 5

CONCLUSION

5.1 Goals

The long range goals of the LSNLIS project are to develop a
system for man-machine communication in natural English which is

so natural and convenient that the task of formulating requests
for the machine need not distract the scientist from his tasks of

hypothesis formation and testing. We would like to be able to

understand the scientist's requests in whatever form they occur

to him, without requiring him to rephrase them into a constrained

and artificial language. Although English is not necessarily the

only means of achieving this degree of naturalness, we feel that
any artificial language which meets the above criteria will have

to share many features of natural language such as vagueness,

ambiguity, etc. and that it is more fruitful to try to deal with

these problems in English than to try to devise an artificial

language which is both as easy for people to think in as English,

and at the same time more easy to process by machine.

In addition to the long range goal of making such a system

possible in the distant future, we have the additional goal of
making some more limited version of the goal available in the next

few years. That is, as our knowledge of the linguistic processes
involved in the understanding of natural language increases, it

should be possible to harness this knowledge into a system which,

although more limited than the ultimate goal, will nevertheless

perform useful work. We believe that the state of the art in

natural language processing is at the point where such applications

are possible, and the current LSNLIS prototype is an attempt to

carry out such an application.

5.1

5.2 Demonstration of the Prototype

At the Second Annual Lunar Science Conference, held in

Houston, Texas, January 11-13, 1971, the LSNLIS system was

run as a demonstration twice a day for three days. During

this time the lunar geologists attending the conference were

invited to ask questions of the system. Approximately ii0

requests were processed, many of which were questions whose

answers would contribute to the work of the requestor and not

merely "toy" questions to see what the system would do. These

requests were limited to those questions asked which in fact

dealt with the data base of the system (many people asked their

questions before they could be told what the data base contained)

and were restricted to not contain comparatives (which we did not

handle at the time, the contract being only 6 months old) by

filtering out those requests which contained comparatives. The

requests were freely expressed, however, without any prior

instructiQns as to phrasing and were typed into the system

exactly as they were asked.

Of iii requests entered into the system during the three

days, 10% of them failed to perform satisfactorily because of

!

parsing or semantic interpretation problems. Another 12% failed

due to trivial clerical errors such as dictionary coding errors

which were easily corrected during or immediately after the

demonstration. The remaining 78% of the requests were handled

to our complete satisfaction, and with the correction of the

dictionary coding errors and other trivial errors, 90% of the

5.2

questions expressed fell within the range of English handled by

the system. This performance indicates that our grammar and

semantic interpretation rules, which were based on the information

of a single geologist informant, did indeed capture the essential

details of the way that geologists would refer to the objects

and concepts contained in our data base. Examples of the

requests which were received are:

(GIVE ME TIIE AVERAGESM ANALYSIS OF TYPE A ROCKS)

(WHAT IS THE AVERAGEMODALCONCENTRATIONOF ILMENITE

IN TYPE A ROCKS?)

(GIVE ME EU DETERMINATIONSIN SAMPLESWHICH CONTAIN ILM.)

(GIVE ME ALL K / RB RATIOS FOR BRECCIAS.)

(WHAT BE ANALYSES ARE THERE?)

(GIVE ME OXYGEN ANALYSES IN S10084)

(WHAT SAMPLES CONTAIN CHROMITE?)

(WHAT SAMPLES CONTAIN P205?)

(GIVE ME THE MODAL ANALYSES OF P205 IN THOSE SAMPLES)

(GIVE ME THE MODAL ANALYSES OF THOSE SAMPLES FOR ALL PHASES)

(DOES SI0046 CONTAIN SPINEL?)

(WHAT PHASES DOES Si0046 }_VE?)

(_{AT IS THE AVERAGE CONCENTRATION OF IRON IN ILMENITE)

(GIVE ME REFERENCES ON SECTOR ZONING)

(GIVE ME REFERENCES ON ABYSSAL BASALTS)

(GIVE ME ALL IRON / MAGNESIUM RATIOS IN BRECCIAS)

(GIVE ME ALL SC46 ANALYSES)

(WHAT SOILS CONTAIN OLIV)

(GIVE ME ALL OLIV ANALYSES OF SI0085)

(WHAT ARE ALL TUNGSTEN ANALYSES?)

(GIVE ME IRON ANALYSES FOR PLAGIOCLASE IN SI0022)

(GIVE ME ALL ZIRCONIUM CONCENTRATIONS IN ILMENITES)

5.3

5.2 What We Have Accomplished

The current LSNLIS prototype represents a significant step

in the direction of the goals discussed above. Within the range

of its data base, the system permits a scientist to ask questions

and request computations in his own natural English in much the

same form as they arise to him (or at least in much the same form

that he would use to communicate them to another human being).

This is borne out by the performance of the system during the

demonstration at the Second Annual Lunar Science Conference. The

system answered most of the questions dealing with its data base

which were asked by the investigators during the demonstration.

The effort required to recast the request into a form suitable

for execution in the data base is assumed by the natural English

preprocessor, which translates the English requests into compact

"disposable" programs which are then executed in the data base.

The Englist preprocessor therefore functions as an automatic

programmer which will convert the user's request into a tailor-

made program for computing or retrieving the answer. The English

processor knows the ways in which geologists habitually refer to

the elements, minerals, and measurements contained in its data

base; it knows the specific details of the data base table layouts;

and it knows the correspondence between the two. Thus, for example,

the user need not know that the mineral Olivine is abbreviated

OLIV in the data base, that the concentrations of Titanium are

recorded in terms of the percentage of Ti02, that the class of

rocks referred to variously as "type A", "high alkali", or "fine

grained crystalline" are encoded as "TYPEAS" in the data base.

These facts are "known" by the natural English processor, and the

user's request is automatically translated from the form in which

he may ask it into the proper form for the data base. Thus an

appreciable portion of the goals of the system are met by the

prototype (at least for the current limited data base).

5.4

5.3 Where We Stand

Although our current system does indeed exhibit many of the

qualities that we have outlined as our goals, we are still far

from achieving the goal as stated. The knowledge that the current

system contains about the use of English and the corresponding

meanings of words and phrases is limited to those English construct-

ions which pertain to the system's data base of chemical analysis

data; (which has a very limited and simple structure). Indeed

this data base was chosen as an initial data base because its

structure was simple and straightforward. In order to incorporate

additional data bases into the system, it will be necessary to

provide the system with information about the ways that the users

will refer to those data bases in English, the vocabulary they will

use, the ways they will use that vocabulary, and the "meanings" of

the words and constructions in terms of the data base tables. For

some tables, (those whose structure is as simple and direct as the

chemical analysis table) this process may be a direct extension

of the current facility and may require only the addition of new

semantic rules for interpreting the new words and constructiens.

For other applications, however, this will require much greater

sophistication in both the linguistic processing and the uneerlying

semantic representations and inference mechanisms. One type of

data which will require considerable advancement in the state of

the art is the representation and use of data which describes

surface and structural features of the samples. This data does not

fit conveniently into a table or a paradigm, and the techniques for

storing it, indexing it, and providing access to it for retrieval

and inference remain to be developed. Indeed, it is in the handling

of such information that natural language querying may hold its

greatest promise, but such potential is as yet undeveloped.

5.5

5.3.1 Linguistic Fluenc [and Completeness

There are two scales which can be used to measure the per-

formance of a system such as LSNLI_ We can call them completeness

and fluency. A system is logically complete if there is a way to

express any request which it is logically possible to answer from

the data base. The scale, of fluency measures the degree to which

virtually any way of expressing a given request is acceptable.

The two scales of completeness and fluency are somewhat independent

in that it is possible to have a fluent system which will accept

virtually any variations on the requests which it accepts, but which

is nevertheless incomplete. Likewise, a system may be logically

complete but very restricted in its syntax. A natural language

system which is incomplete cannot answer certain questions, while

such a system that is not fluent is difficult to use.

5.3.1.1 Fluenc[of LSNLIS

The LSNLIS prototype is quite fluent in a few specific con-

structions. It will recognize a large number of variations on

requests of the form "give me all analyses of constituent x in

phase y of sample z." It knows many variations of "give me" and

many different variations on "analysis". However, there are other

requests which (due to limitations in the current grammar) must

be stated in a specific way in order for the grammar to parse them

and there are others which are only understood by the semantic

interpreter when they are stated in certain ways. Most of the

limitations of fluency in the current system are simply due to the

fact that the necessary grammar rules and semantic interpretation

rules have not been put into the system. Continued development

of the grammar and semantic rules will result in continued improve-

ments in fluency, and there is no visible ceiling other than an

economic one to the fluency which can be achieved.

5.6

5.3.1.2 Completeness of LSNLIS

The criteria for logical completeness is a level of achieve-

ment that is not generally met by currently available data management

systems using artificial request languages, much less by a system

that recognizes natural language. The request language used for

the retrieval component of LSNLIS fares better than most data

management systems in this respect since it is fundamentally an

extension of the predicate calculus of quantificational logic, but

there are still some extensions which the language requires in order

to fully achieve logical completeness. In addition to this incom-

pleteness of the formal request language, there are limitations in

the logical completeness of the subset of English handled by the

system. This arises largely from the difficulties of parsing

conjunction constructions in English, but there are also problems

in the ambiguity of the scopes of quantifiers. However, the subset

of English which is currently handled is adequate for expressing

most ouestions which have arisen in practice, and with some further

work on conjunctions should become a very convenient l_nguage to use.

5.4 Problems for Further Research

5.4.1 Modifier Placement

The semantic rules for the interpretation of the queries in

the current system are written in a fairly powerful format which

allows a great deal of flexibility. However, there are a number

of aspects of the problem which have been surmounted in the proto-

type by brute force, or by ad hoc procedures. One of these is the

syntactic ambiguity of modifiers, as in "Give me the average

analysis of breccias for all major elements." In this sentence,

there are three syntactic possibilities for the modifier "for all

major elements" (it can modify "breccias", "analysis", or "give"). In

this case, our understanding of the semantics of the situation

tells us that it modifies "analysis", since one can analyze a sample

5.7

for an element, and "breccias for all major elements" doesn't

"make sense." Without a similar semantic understanding of the

situation, the computer has no criteria to select which of these

three cases to use. We have in our present system, embodied in

the semantic rule for interpreting analyses, the equivalent of the

knowledge that "one can analyze a sample for an element." Unfortu-

nately, this information is not in a format which makes it conven-

iently available to the parser for use in deciding where to put the

prepositional phrase. The parser in our present system, therefore,

uses a crude consistency check between verbs and the prepositional

modifiers they may take to make an initial placement of modifiers.

Since this approximation may sometimes be in error or may not

entirely determine modifier placement, the semantic rules have been

made smarter in order to find the modifier "for all major elements"

when interpreting the phrase "average analysis of breccias for all

major elements" even though it appears as a modifier of "breccias"

and not where it should be. This mechanism, while adequate for

the present level of the system, carries inherent difficulties,

since it is now possible for several semantic rules to use the same

modifier for different purposes.

5.4.2 Retrieval Component

Another area of research has to do with the retrieval component

to which the natural language processor interfaces. To take full

advantage of the natural language communication, it is clear at this

point that there are requirements on the facilities which the

retrieval component must possess. For example, the natural language

processor contains a facility for dealing with a number of anaphoric

expressions (suc_ as pronouns) and filling in their antecedents.

That is, when the semantic interpreter produces an interpretation

of a noun phrase (a potential antecedant), it remembers that inter-

pretation together with the syntactic structure of the English

phrase. Subsequently, when an anaphoric expression is encountered

5.8

which could take this phrase as an antecedant, this semantic inter-

pretation is filled in for the anaphoric expression. However, the

semantic interpretation is merely a form which enables the retrieval

component to compute the actual members of the set denoted. Unless
the retrieval component has remembered the result of its previous

computation, it will have to perform the computation again. There

are thus two problems in dealing with anaphoric expressions--one

is recognizing them and identifying the antecedant, and the second

is remembering the actual set of data base objects denoted by the

antecedant. If the computation which determines the extension of

a phrase is sufficiently simple and cheap, then it is advantageous
to compute it over again, rather than to save the result. Only if

the computation is complex or expensive is it worth the cost in

memory space to store the result. Thus the retrieval component

needs some appropriate mechanism for determining whether to save

such results. (It would be nice if the system were smart enough

to know which types of computations might be used as antecedants.

It is not clear, however, that there is any recognizable feature

which distinguishes such computations.)

5.4.3 Optimizing the Retrieval Expression

At the present, the retrieval programs which are written by

the English language processor contain a number of inefficiencies

that are due to the way they were generated from natural English,

and which would be avoided by a human programmer. Although the

cost savings of having the program produced automatically (compared

to paying a human programmer to write it) will more than offset the

additional cost of computer time in all but extremely long compu-

tations, there are undoubtedly improvements that could be made

by imposing an optimization phase between the query generated

by the semantic interpreter and the actual retrieval operation.

The situation is very analogous to the early Fortran compilers

5.9

(and many that are still being written) where the quality of code

generated by the compiler was inferior to that produced by a

human programmer, but the savings in programmer time more than

offset the costs associated with the inefficiency for most programs--

especially if the program was not to be run many times. In our

case, the programs which are constructed will be executed only once,

and so the cost of a human programmer could not be amortized over

many runnings.

5.4.4 Semantic Representation

The previously mentioned problem areas have all dealt with

essentially efficiency questions that would make a system with

the current capabilities more economical to run. There are,

however, more serious problems having to do with the limitations

of the system's current capabilities. Although the procedural

approach to semantics and meaning that has been taken here

appears to be generalizable to any concept admisable to

empiricist philosophy, the fact remains that there are many

English constructions for which no effective procedural

characterizations have yet been formulated. For example, the

linguistic and semantic understanding of processes as fundamental

as adverbial modification and mass nouns remain very much

obscure and no effective mechanical semantics exists for such

concepts.

As discussed previously, the current LSNLIS deals only

with extensional inferences that can be computed from well-

formatted data bases. The ability to deal with more complex

types of data entities--especially descriptions of shape and

textural features of the lunar samples will require the use

of intensional inference procedures and will raise as a more

pressing issue the question of appropriate notational

representations and structures for these intensional entities.

In short, much basic research in the semantics of natural

language remains to be done before a fully general LSNLIS

5.10

can become a reality.

5.5 Prospects for the Near Future

As we have just pointed out, there are still many

technical and theoretical problems yet to be overcome before

the long term goals envisioned by this project can be achieved.

However, we feel that the language processing technology that

is embodied in the current prototype is such that certain types

of limited applications could be feasible in the near future.

In those areas where the semantically relevant concepts can

all be formally specified in terms of well-formatted data bases

such as the chemical analysis data base, and where only English

querying and not English updating and data input are required,

then the language processing techniques embodied in LSNLIS are

capable of providing a fluent language understanding system

which removes almost all of the burden of learning artificial

conventions from the user. Moreover, the time required for

processing requests in the current LISP implementation (approx.

30 seconds of cpu time per request on a hardware paged PDP-10)

could easily be cut by an order of magnitude by careful

implementation in a language such as FORTRAN or in machine

language. At such a level, the cost of such processing would

not be exorbitant.

5.11

5.6 Summar_

The LSNLIS project has made significant progress in its

two years of development. We now have a working prototype which

demonstrates many of the features which were the objectives of

the project and which demonstrates the technical feasibility of

natural English querying in the NASA MSC and other similar

environments. The system enables a working scientist to ask

questions and request computations in a natural and convenient

medium--his own natural language--in much the same form in

which they arise to him, with the effort required to recast

his request into a form suitable for execution in the data

base being assumed by the system.

5.12

References

Bobrow, D.G., Murphy, D.P., and Teitelman, W., "The BBN-LISP
System", BBN Report 1677, Bolt Beranek and Newman Inc.,
Cambridge, Mass., April, 1968.

Chomsky, N., Aspects of the Theory of Syntax. Cambridge:
M.I.T. Press, 1965.

Chomsky, N., Syntactic Structures.
1957.

The Hauge: Mouton and Co.,

Myer, T.R. and Barnaby, J.R., TENEX Executive Language, Bolt,

Beranek and Newman Inc., Cambridge, Mass., Jan., 1971.

Petrick, S., A Recognition Procedure for Transformational

Grammers. Unpublished doctoral dissertation, M.I.T., 1965.

Simmons, R.F., "Answering English Questions by Computer: A Survey",

Communications of the ACM, Vol. 8, No. i, pp. 53-70, Jan. 1965.

Stockwell, R., Schachter, and Partee, B., Inte@ration of

Transformational Theories on English Syntax. UCLA, 1968.

Watt, W.C., "Habitability", American Documentation, Vol. 19,

No. 3, July 1968.

Woods, W.A., "Semantics for a Question-Answering System".

Ph.D. thesis, Harvard University, Cambridge, Mass., Aug., 1967.

Woods, W.A., "Procedural Semantics for a Question-Answering

Machine," AFIPS Conference Proceedings, Vol. 33 (1968, FJCC).

Woods, W.A., "Augmented Transition Networks for Natural Language

Analysis", Harvard Computation Laboratory Report No. CS-I,

Harvard University, Cambridge, Mass., Dec., 1969.

Woods, W.A., Transition Network Grammars for Natural Lan@ua@e

Analysis. Communica£ions of the ACM, 13, 591-602, Oct. 1970.

Woods, W.A., "An Experimental Parsing System for Transition Network

Grammars", BBN Report No. 2362, Bolt Beranek and Newman Inc.,

Cambridge, Mass., May 1972.

Woods, W.A., Kaplan R.M., "The Lunar Sciences Natural Language

Information System", BBN Report No. 2265, Bolt Beranek and

Newman Inc., Cambridge, Mass., September 1971.

5.13

Appendix A

THE LSNLIS USER'S GUIDE

Negotiatin_ with TENEX

An experimental LSNLIS system is currently operationaJ on the

BBN-TENEX Time-Sharing System in Cambridge, Mass. In order to

use the system, it is necessary to log into the TENEX system.

This is done as follows: After establishing a telephone connection

with the computer by dialing the computer's number from a data set

or acoustically coupled teletype, the TENEX system will type some-

thing like:

BBN TENEX 1.21.00 5-APR-71 EXEC 1.2b

The "@" sign is the TEI_EX executive's symbol which indicates that

it is waitinK for the user to type somethinK. The user should now

type:

LOGIN WARNER

followed by a space, followed by a secret passworu (w?_ich will not

print on the teletype), followea by another space, followed by an

account number, followed by a carriage return. (The password ana

account number will be given to authorized users.) For a hypotheti-

cal account number 777777, the line on the teletype would look like:

@LOG WARNER 777777

If you have logged in successfully, the system will type some

information relating to your teletype anU Job number, anu will type

another "_" waiting for your input. If not, it will give an error

comment and wait for you to try again. If you do not succeed in

logging in within a reasonable period of time, the system will

automatically log you out and break the telephone connection.

A.I

Once logged in, the user can call the execution of the

English preprocessor as described in the following section. He
can return to the TENEX executive at any time by typing control C

(i.e. by depressing the control key on the teletype and typing C).

To log out of TENEX at the end of the session, return to the TENEX

executive and type:
LOGOUT

followed by a carriage return. The system will type some accounting

information and automatically break the telephone connection.

Note: If for some reason the telephone connection should be

broken accidentally by some difficulty with the telephone line or

for any reason other than a normal logout, the job will be held by
the TENEX system in a "detached" status and can be resumed. This

can be done by dialing up the machine again and instead of typing

LOGIN, type ATTACH (space) (password) (space) (the job number that
the system assigned you when you logged in)(carriage return). If

you are successful, TENEX will type "_" with no further comment and

you will be reattached to your old job. If you hag lost the con-
nection while in the English preprocessor subsystem, you can resume

it by typing CONTINUE followed by a carriaze return. If you have

any trouble reattaching, call BBN by telephone. A detached Job

continues to be char_ed for computer hookup time until you reattach

to it and log it out normally.

A.2

Using the English Preprocessor

After logging into the TENEX system, the user enters the

English preprocessor by typing:

RUN DEMSYS.SAV

followed by a carriage return.

comment something like:

BBN LISP-10 11-31-70

The system will then type a

and will then type a left arrow indicating that LISP is waitin_

for input. The user should then type:

SETUP(LOWFORK.SAV)

This sets up the lower (retrieval) fork which contains the data

base. When the system again types the left arrow, the user shoulu

type:

TALKER()

to invoke the English preprocessor executive. Notice that LISP

will echo a carriage return as soon as the parentheses in its input

string ballance. TALKER will identify itself, and will then pro-

ceed to accept queries for processing or LISP commands for execution.

The former consist of English sentences enclosed in parentheses,

while the latter consist of LISP commands followed by arguments

enclosed in parentheses.

TALKER indicates that it is waiting for input by t_Ding its

"system symbol", which consists of two asterisks.

To leave TALKER and return to the TENEX executive at the end

of the session, one can either type control C as described before,

or one can type the LISP command.

LOGOUT()

Control Characters in LISP

There are a number of special control characters which make

life easy in the interactive LISP system in which the English

processor runs. These characters are typed by depressln_ the

control key on the teletype and typing the corresponding character.

If printed on the teletype, a control character is preceeded by

an upward arrow, however, most of the control characters do not

print when they are typed, but cause a side effect. The following

characters are useful.

Control A deletes the preceeding typed character.

It indicates the deleted character by echoing a

backwards slash followed by the deleted character.

Control Q deletes the current contents of the input buffer.

(Generally the input buffer is the same as the current

typed line--the exception bein_ automatic carriage

returns generated by the system when the user types

beyond the end of the line. These exceptions are

indicated by two asterisks be_innlnf_ the new "line".)

Control R retypes the current contents of the input buffer

(useful when echos from control A haw_ made the current

line unreadable).

Control D aborts whatever you are doing, and returns to the

top level LISP executive. (useful whenever you F_et into

trouble or want to discontinue a sentence and type

another sentence. It throws you out of TALKER, however,

and it is necessary to retype TALKEI_()).

Control E is less drastic than Control D and will usually

abort a sentence and return to TALKER to await another

sentence. It should usually be used before trying

Control D. Control E will not break out of an embedded

help loop, however.

Control C interrupts whatever you are doin_ and returns to

the TENEX executive under which the LISP system runs.

This is used in order to return to TE_EX to logout, but

can also be used to return to TENEF for any other reason.

(The interrupted LISP system can be continued by typln_

A.4

CONTINUE to the TENEX executive as lonK as it has

not been supplanted by a call to some other sub-

system.)

CAUTION:

Typing control characters D or E while the lower fork is

operating will yank control away from the lower fork and return

it to the language processor fork at the top level, leaving the

file buffers open and exiting from the TALKER routine. If this

happens, the user should type EXECUTE(NIL) to close the file

buffers in the lower fork (and type out whatever had been written

into the I{ITFILE buffer before the interrupt) and then type

TALKER() to reenter the language processing executive.

A.5

Entering Queries for Processin$

Queries are entered into the LSNLIS system as normal English

sentences enclosed in parentheses• For example:

**(GIVE ME ALL ANALYSES OF SAMPLE SI0046)

(TALKER types the double asterisks to indicate that it is ready

for input.) Terminal punctuation is optional•

The system understands such concepts as "give me "

"analyses of a sample for an element in a phase", "modal analyses",

"Potassium / Rubidium ratios" "average analyses" etc It knows

both the full chemical element names _d their abbreviations, it

knows which of the elements are measured in their oxiae form as

opposed to the elemental form, and it knows a number of variant

names for many minerals and rock types• Thus, the user need not

concern himself with knowing the particular standard form of the

mineral or element names used in the data base, since this standard-

ization takes place during the semantic interpretation of his

request• Also, the system makes an effort to allow for all of the

reasonable paraphrases of a given request so that the user need

not concern himself unduly with the problem of formulating his

request in a way which will be acceptable to the system. All of

the expressions "Olivine analyses of Sample SI0046 for Hydrogen",

Hydrogen analyses of Sample SI0046 in Olivine", "analyses of

SI0046 for Hydrogen in Olivine" etc are equivalent

In addition, the system knows reasonable aefault assumptions

when the requestor fails to mention the phase or element of concern

in his request. Tf he fails to mention the phase, the overall

phase (i.e. the entire sample) is assumed. Likewise, if he fails

to mention a specific element, then a quantification of the request

over the major elements is assumed.

A.6

Depending on the setting of a number of mode variables, the

system can display various intermediate results in the course of

the processing. It can show the time spent in parsing ana in

interpreting, the parse tree that results, the intermediate semantic

interpretation, and finally the answers that are generated by the
sentence. In the normal mode, only the interpretation and the

answers will be displayed. However, any of the other displays can

be obtained by setting the corresponding mode variable to "T" (the

LISP system's symbol for "true") and they can be turned off again

by setting the mode variable to "NIL" (the LISP system's equivalent

of "false"). For example, the commands:

SETQ(PPRINT T)
SETQ(ITIMEFLAG NIL)

will set the mode variable PPRINT to "T" indicating that parsings

should be printed and will set ITIMEFLAG to "NIL" indicating that the

interpretation time is not be be printed. The mode variables

which govern these functions are PPRINT (print parsing), IPRINT

(print intermediate semantic interpretation), PTIMEFLAG (time

the parsing), and ITIMEFLAG (time the semantic interpretation).
There are other mode variables which govern other aspects of the

system, but they are not necessary to the typical user.

A.7

Encounterin_ Unknown Words -

The previous sections cover all of the basic information

needed by a user as long as he uses only words that are in the

vocabulary of the system, -- currently three or four thousand

words. However, it is inevitable that a user, asking unconstraine_

questions about technical subjects will use words which the system

has not previously encountered and are not in its vocabulary. We

will therefore give here a brief description of the system's

operation in that case.

When the system encounters a word which is not in its

dictionary and is not an inflected form of a wor_ in its dictionary

(it performs inflectional morphology on the most common types of

regularly inflected words), it announces this fact to the user

with a comment:

I DON'T KNOW THE WORD XXXXXX

PLEASE TYPE ITS DICTIONARY ENTRY

D*

(where XXXXXX will be the word in question).

at this point, the system is in a special subsystem executive

(which identifies itself with the system symbol "D*")waitlng for

the user to give it a dictionary entry for the indicated word.

The user may at this point do any of several thin_s. If he wants

to give up on the sentence and try again from scratch, he can type

QUIT followed by carriage return, and the system will return to

ask for another sentence. If he knows the correct form for the

needed dictionary entry, he can type DDEF followed by the proper

dictionary entry to add the word to the dictionary, and then type

OK followed by a carriage return to tell the system to continue

its parsing. If the user does not know the proper format for

_.8

the dictionary entry, he can look at the dictionary entry for a
similar word and copy it. The command DICT? followed by a worU

in parentheses will type the dictionary entry for a word. For

example:

DICT? (REPORT)

would result in a typeout of the dictionary entry for the word

"report", which would look like:

(REPORT

N -s)

The dictionary entry will print out with indenting for easier

reading, but the indenting is not necessary for a dictionary entry

which the user types in. To type in this same dictionary entry,

the user would type:

DDEF(REPORT N -S)

If the word which the system requests is the root form of the

word or if it is an inflected form of a word which undergoes regu-

lar inflection, then the user need only give a dictionary entry

for the root of the word. If, however, the word is an inflectea

form of a word which does not undergo regular inflection, then he

should give entries for both the root word and the inflected form.

The following interchange is an example:

I DON'T KNOW THE WORD MICE

PLEASE TYPE ITS DICTIONARY ENTRY

D*DDEF(MOUSE N IRR)

MOUSE

D*DDEF(MICE N (MOUSE (NUMBER PL)))

MICE

D*OK

A.9

Here, the computer typed everything except the lines that begin

with "D*", and the computer typed the "D*"'s which begin those lines.

For more complete information on the format for dictionary entries,

see the writeup on dictionary formats.

One frequent source of words which are not in the dictionary

are misspelled words. If a misspelling is not caught by the user

at the time he types it, the system will generate an "I DON'T KNOW

THE WORD"comment and wait for a dictionary entry. If this is the

case, the user can change the word to the correct word by typing

CHANGEWORDfollowed by the new word or words enclosed in parentheses.

For example:

I DON'T KNOWTHE WORDMODOL

PLEASE TYPE ITS DICTIONARY ENTRY

D*CHANGEWORD(MODAL)

The system will respond by tyDinF the remainder of the sentence to be

parsed with the new substitution. Note that CHANGEWORDcan be
used to delete a word (by including no words in the parentheses)

or to replace a single word by several (by including several words

in the parentheses). Its use is in no way restricted to correct-

ing spelling errors, however, and it can conveniently be used to
substitute an equivalent word to see if the system knows it. (If
not, the system will again respond with an "I DON'T KNOWTHE WORD"

message.) When the user is satisfied with the change, typln_ OK

will cause the system to resume parsing on the changed string.

_.10

Logsin $ Ou t

Although this information has already been covered in

previous sections, I will cover it again here for easy reference.

When the user has completed a session with the system and is ready

to log out, he must first return to the TENEX executive. He can

do this either by typing LOGOUT() or by typing control C. When

the system responds with an "@", he need only type LOGOUT followed

by a carriage return, and the system will automatically logout and

break the telephone connection.

k

A. II

Appendix B.

The Transition Network Grammar

B.I

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:5_PM PAGE I

(PROGN (LISPXPRINI (QUOTE "FILE CREATED ")

T)

(LISPXPRINI (QUOTE "12-JUN-72 21:5_:28")

T)

(LISPXTERPRI T))

(LISPXPRINT (QUOTE ANNGRAMCOMS)

T)

(RPAQQ ANNGRAMCOMS ((G: NASAGBAMMAR)))

(LISPXPRINT (QUOTE (G: NASAGRAMMAR)) T)

(RPAQQ NASAGRAMMAR (COMPL/ COMPL/NTYPE CO_Ph/S FO_/FOR FO_/NP FOR/TO

ING/BY NP/ NP/j NP/,ESP NP/,NP NP// NP/ADV NP/A_T _P/AVG NP/DET NP/HEAD

NP/HELDPART NP/MORE NP/N NP/NP NP/NP: NP/ORD NP/QtANT NP/R

NP/SUPERLATIVE NP/SUPERSET NPR/ NPR/NPR NPR/TITLE _PU/; NPU/;NP PAREN/

PAREN/PAREN PP/ PP/NP PP/PREP PP/QDET QUANT/ QUAN_UANT QUANT/UNIT

R/ R/NIL R/PREP R/WH S/ S/; S/;S S/AUX S/DCL 5/HO_ J/IMP 5/NO-SUBJ

S/NP S/Q S/QDET S/QPI S/QP2 S/S S/SADV S/THERE 5/_? VP/ADJ VP/ADJ-COMP

VP/AGT VP/COMP-ADJ VP/HEAD VP/MORZ VP/NP VP/V VP/VP))

(DEFINEG

(COMPL/

(WRD FOR T

(TO FOR/FOR

(, START OF COMPLEMENT NETWORK;

TRANSFZRS TO THE PROPER STATE FOR THE IDENTIFIED

COMPLEMENTIZER.)

))

(WBD

(WRD

THAT T

(SETRQ NTYPE THAT)

(TO COMPL/NTYPE))

THAN T

(SETRQ NTYPE THAN)

(T? COMPL/NTYPE))

(JUMP FOR/NP T

(C?ND

((NIYLLR SUBJ)
(SETR SUSJ (BUILDQ (NP (PRO SOMETHING))))))))

(COMPL/NTYPE

(PUSh S/ T

(SETR S ,)

(, LOOK FOR A COMPLETE S WHEN THE COMPLEM[NTIZE_

(IN NTYPE) SO SPECIFIES)

CTO COMPL/S)))

B.2

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:5_PM PAGE 1:1

(COMPL/S

(POP (BUILDQ (NP + +)

NTYPE S

T))

(. LAST STATE OF

CO_SPLEMENT NETWORK;

POPS A COMPLEMENT NP

STRUCTURE.))

(FOR/FOR

(PUSH NP/ T

(SETR SUBJ ,)

(* IF THE COMPLEMZNTIZER IS 'FOR'p LOOK FO_ THE

SUBJECT NP OF A FOR-TO COMPLEMENT)

(TO FORINt)))

(FOR/NP

(WBD T:" T

(T: FOR/TO

(CAT I:EG (NULLN NEG)

(SETR NEG *_

(T2 FOR/N_}})

(" LOOK F_>R 'TO' OR 'NOT

TO'.)))

(FOR/TO

(PUSH Vp/v (CHECKF V UNTENSED

(* IF 'TO', 'NOT TO', OR 'FOR' + NP WAS FOUND, LOOK

FOB THE REMAINDER OF THE FOB-TO COMPLEMENT.)

SENDR SUBJ (GETR SUBJ))

SEND_ OBJ (GET_ OBJ))

SENDR NEG (GETB NEG))

SENDR TNS (GET_ TNS I))

SE_DRQ TYPE FOR-TO)

SETRO NTYPE NOM)

SETR S *)

T: cOMPL/S)))

B.3

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:5_PM PAGE 1:2

(ING/SY

(PUSH NP/ T

(SETR SUBJ ,)

(TO VP/VP

(, IF THE SUBJECT WAS NOT PROPERLI DETERMINED IN A

POSS-ING COMPLEMENTp LOOK FOR IT HERE.)

5)5

(NP/

(CAT DET T

((GETF POSSPRO (* START C_F THE NP

NETWORK.))

(ADDL ADJS (BUILDQ (POSS (NP (PRO *)))))

(SETRQ DET THE

(, IF THE DETERMINE_ IS A POSSESSIVE PRONOUN

(MY, YOURS, CO_STRUCT THE POSSESIVE HOD_FIER AND USE

'THE' FOR THE DETERMINER)

5)
(T (SETR DET *)))

(TC NP/ART))

(CAT PEC T

(SETR N (BUILDQ (PRO *))

)

(SETR NU (GETF NUMBER))

(T:_ NP/NP))

(MEM (WHETHER IF)
T

[SETR NTYPE *)

(T" COMPL/NTYPE

(* A PRONOUN MAY PICK UP

PP MODIFIERS IN NP/HEAD)

(* CONSTRUCT THE COMPLEMENT STRUCTURE FOR SENTENCES

$i]Ch AS 'I DON'T KNOW WHETHER HE LEFT.')

5)

(CAT NEG (NULLR NEG)

(SETR NEG *)

(T_i NP/))

(JUMP NP/ART (OR (WRD MOST)

(NOR (CAT (DET PRO NEG)

(* SINCE i PRONOUN OR DETERMINER iS NOT REQUIRED TO

B_GIN AN NP, CONTINUE PROCESSING.)

5

(WRD (WHOSE WHO WHAT WHETHER IF))))))

B.4

; <WEBBER>ANNGRAH.;23 MON 12-JUN-72 9:5_PM PAGE 1:3

(NP/,

(MEM (ETC. ETC)

T

(ADDR BODY •

(SETRQ CONJ AND)

(TC NP/#NP))

(CAT ADV (RFEAT TRANSADV)

{SETR ADV.)

(T_ NP/,ESP))

(CAT CSNJ (NOR (WRD #)

(GETR CONJ))

(SETR CONJ .)

(T<_ NP/,))

(PUSH NP/ T

(SENDR NPLIST T)

(ADDR BODY *)

(T_' NP/,_P)))

(' AFTER A COMMA AT THE

END OF A NP.)

(* 'ETC' FILLS OUT A

CONJOINED SERIES.))

(" A TRANSITIVE ADVERB

('PARTICULARLY',

'ESPECIALLY') MAY

INTRODUCE A POST-NOMINAL

MODIFIER.)

(* A CONJUNCTION CAN

LEAD INTO THE FINAL ITEM

IN A SERIES.)

(* LOOK FLR THE NEXT

ITEM IN THE SERIES.)

(NP/,ESP

(PUSH NP/ T

(ADDL NMODS (BUILDQ (ADVP (ADV +)

,)
AD¥)

)

(COND

((NULLR PPFLAG)

(SETRO PPFLAG T)))

(T? NP/HEAD)))

(* ANALYZE THE

_OST-NOMINAL MODIFIER

INTRODUCED BY THE

TRANSITIVE ADVERB)

B.5

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:b_PM P_E I:_

(NP/,NP

(WRD , T

(TO NP/,

(_ AN ITEM IN A COMMA-SPLICED NP SERIES HAS BEEN

FOUND. IF THE NEXT WORD IS ',', LOOK FOB SUBSEQUENT

ITEMS. OTHERWISE, POP THE CONJOINED STRUCTURE.)

))

(POP (COND

((AND (NULLR CONJ)

(WRD (AND OR)
(CADAR (LAST (GETR BODY)))))

(PROG (BODY CONJ LAST TEMP)

(_ IF NO CONJ WAS FOUND AT THIS LEVEL BUT THE LAST

NP IN THE SERIES WAS ITSELF A CONJOINED Np WITH A

CONJ, PROMOTE THE CONJ UP TO THIS LEVEL:

(NPI NP2 (NP AND NP3 NP_)) -->

(NP AND NPI NP2 NP3 NP_))

(SETQ BODY (APPEND (GETR _ODY)))

(SETQ LAST (LAST BODY))

(SETQ CONJ (CADR (SETQ TE_P (CAR LAST))))

(RPLACD LAST (CDDDR TEMP))

(RPLACA LAST (CADDR TEMP))

(_ETURN (CONS (QUOTE NP)
(CONS CONJ HOOT)))))

(T (BUILDQ (_ (NP #)
+)

(CO_;D

((GETR COW, J))

(T (QUOTE OR))

(, IF THE LAST ITEM WAS NOT A CONOO_N_D Np AND THOR5

WAS NO CONJ AT THIS LEVEL, If_SERT '0_')

)

3OPT)))

(OR (GETH CO_;J)

C_RD (AN_ 0_)

(CADA_ (LAST (G£TR BODY))))

(_ULL STRING))))

B.6

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:_PM PAGE 1:5

(NP//

(CAT N T

(SETR N (BUILDQ (N + / (N *))

N)

)

(TO NP/DET))

(PUSH NPR/ T

(SETR N (BUILDQ (N + / *)

N))

(T[NP/DET)))

(* FIND THE S_COND TERM

IN A RATIO)

(NP/ADV

(CAT ADJ T

(ADDL ADJS (BUILD0 (_ (ADJP)

((ADJ *)))

(REVERSE (GETR ADVS)))

(. AN ADVERB HAS BEEN FOUND AFTER THE DETERMINE_

STRUCTURE HAS BEEN BUILT, OR AFTER I OR MORE

PRENOMINAL MODIFIERS HAS BEEN PROCESSED.

A SEQUENCE OF ADDITIONAL ADVERBS IS ALLOWFD, UNTIL

THE ADJECTIVE THEY MODIFY IS FOUND, COMPLETING THiS

PARTICULAR PRE_OMINAL MODIFIER.)

)

(TO NP/DET))

(CAT ADV T

(ADDL ADVS (BUILDO (ADVS .)))

(TC NP/ADV)))

B.7

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:5_PM PAGE 1:6

(NP/ART
(OAT O_D T

(SETR POSTART (BUILDQ ((ORD ,)))

(_ AN ARTICLE (POSSIBLY NULL) HAS B_EN FOUND;
LOOK FOR AN OPTIONAL ORDINAL MODIFIER)

)

(TL NP/ORD)

(, THE NEXT TWO ARCS CATCH DEFINITELY DET]_RMINED

INFLECTED ADJECTIVES LIKE: "THE MOST ANCIdNT ROCK",

"THE OLDEST ROCK", "THE MORE ANCIENT ROCK")

(JUMP NP/SUPERLATIVE (AND (CAT ADJ)
(WRD THE DET)))

(WRD (MORE MOST) (AND (GETP (NEXTWRD)
(QUOTE ADJ))

(WRD THE DET))

(SETR MORE-MOST ,)

(TO NP/SUPZRLATIVE))

(CAT PRO (WRD ONe)

(SETR N (BUILDQ (PRO ,))

)

(SETR NU (GETF NUMBER))

(SETR DET (DETSUILD))

(SETR HEAD (CADR (GETR N)))

(TO NP/HEAD))

(JUMP NP/OflD r))

(, THE PR :NOUN "ONE" CAN

FOLLOW A DETERMINER,

E,G. "THE ONES WHICH..."

AND "WHICH ONDS")

B.8

; <WEBBER>_NNG_A_.;23 MON 12-JUN-72 9:5_PM PAGE 1:7

(NP/AVG

(PUSH PP/ (CAT PREP)

(SENDR V (GETR V))

(ADDL NhODS *)

(SETR HEAD (CADR (GETR N)))

(IU NP/HEAD)

(* THE FUNCTION WORDS "AVERAGE NAX£MUM MINIMUM"p I P

"MOST" AND "LEAST" ARE PARSED AS NP'S, WHEN THEY
D

APPEAR IN ADJECTIVE POSITION.

THE REST OF THE SS NP IS MADE THE O_JECT OF A

DEPENDENT PP. IT INDICATES THE SET OVeR WHICH THE

FUNCTION IS TO BE APPLIED. E.G. "YHE OLDEST ROCK" IS

ANAL_ED AS "rH5 _L_E_T 0_' _HE _O_K_")

(PUSH PP/PREP (NOT (CAT PRSP))

(SENDRQ PREP OF)

(SENDRQ NU' PL)

(SENDR V (GET_ V))

(ADDL NMODS *)

(SETR HEAD (CADR (GETR N)))

(TJ NP/HEAD)))

(NP/DET

(WRD (MORE MOST) (AND (GETP (_EXTWRD

(. HERE _FTER THE COMPLETE DET_[RM£NER STRUCTURE

(INCLUDING ANT, ORD, AIJ$ QUANT) HAS B_EN PROCESSED.

LOOK FOR POSSIBLE PRENOMINAL MODIFIERS

(ADJECTIVES OR PARTICIPLES

(WITH _DVERBS)) AND THEN LOOK FOR A POTENTIAL

HEAD--AN N, NPR, OR GERUND, OR EVEN A 20SS-ING

NoMINALIZATION.)

(QUOTE ADJ)

(. WE R_cOGNIZE UNDETERMINED TWO-WORD INFLECTED

ADJECTIVES. THE THIRD ARC BUILDS AN ADDITIONAL NP

NODE FOB "AVERAGE" "MAXXMUM", ETC

(SEE NP/AVG FOR FURTHER DETAIL.))

(SETR MORE-MOST ")

(T< NP/MORE))

)

(NOT (WRD THE DET)))

B.9

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:5_PM PAGE 1:8

(CAT N (WRD (AVERAGE MAXIMUM MINIMUM MOST LEAST))

(SETR N (BUILDQ (_ _)))

(SETR NU (GETF NUMBER))

(TO NP/AVG))

(PUSH NPR/ (WRD (SAMPLE ROCK LINE LINE# APOLLO))

(SETR N _)

(SETRQ NU SG)

(TO NP/N)

(CAT ADJ T

(ADDL ADJS (BUILDQ (@ (ADJ)

#

)

FEATURES))

(TC _ NP/DET))

(CAT N T

(SETR N (BU!LDQ (N *)))

(SETR NU (GETF NUMBER))

(T< NP/N))

(CAT ADV T

(SETR ADVS (BU!LDO ((ADVS =))))

(TC NP/ADV))

(CAT V (OR (GETF PASTPART)

(GETF PRESPART))

(ADDL ADJS (BUILDQ (ADJ (PARTICIPL_ m))

LEX))

(Tf NP/DET))

(CAT V (GETF PRESPART)

(SETR N (BUILDQ (N #)

L_X))

ISETRO NU SG)

_T[NP/N))

(PUSH S/AUX (OR (CAT {NEG ADV))

(CHECKF V PRESPART))

(" PICKS UP TITLES LIKE

"APOLLO 11", "LINE 5"))

(*)

(, PRENOMINAL

_ARTICIPLES)

C" GERUND HEAD, AS IN

'FRZEZE DRYING')

(. PUSH FOR A POSS-ING NOMINALIZATION.

('JOHN'S FALLII:G ...') IF A POSSESSIVE MODIFIER HAS

BEEN FOUND, IT BECOMES THE SUBJECT OF THE COMPLEMENT

S_TENCE, OTHEPWISE THE SUBJECT IS 'SOMETHING')

B.IO

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:5_PM PAGE 1:9

(SENDR SUBJ (COND
((WRD POSS (CAAR (GETR ADJS)))

(SETQ TEMP (CADAR (GETR ADJS)))
(SETR ADJS (CDP (GETR ADJS)))

TEMPt

(T (SENDR SUBFLAG T)

(BUILDQ (NP (PRO SOMETHING))))))

(SEBDRQ TYPE POSS-ING)

(SETRQ NTYP_ NO_)

(SETR S *)

ITO COMPL/S))

(PUSH NPR/ T

(SETR N *)

(SETRQ NU SG)

(T? NP/N)))

(NP/HEAD

(VIR PP (NPREP)

(, HERE WHEN THE HEAD OF THE NP HAS BEEN POSITIVELY

DETERMI_:ES. LOOK FOR POST-NOMINAL MODIFIERS:

PREPOSITIONAL PHRASES, RELATIVE CLAUSESp TO- AND

I r @THAT- COMPLEhESTS PPFLAG I5 E AFTER A PP HAS BEEN

FOUND; IT INSU_S5 T}iAf SUBSEQUENT REDUCED RELATIVES

WILL _ODIFY THE NEAREST NP,)

(ADDL NMODS * (, RECOGNIZES FRONTED

_2P'S WHICH BELONG TO THE

NP))

(COND

((NULLR PPFLAG)

(SETRO PPFLAG T)))

(TO NP/HEAD))

(PUSH R/ (AND (OP (WRD (WHO WHOM WHOSE WHICH THAT))
{END (WRD (WHICH WHOM WHOSE)

(NEXTWRD))

(CAT P_EP)))

(OR (CADR (GETR DET) (" THIS RESTRICTION

DISALLOWS

NON-RESTRICTIVE RELATIVE

CLAUSES)

)

(WRD PL NU)))

(SENDRQ TYPE REL)

ISENDR WH (BUILDQ (NP (DET WHR)
+

(_U +))

N NU))

(SENDR ANAPHORFLG (CADH (GETR N)))

(ADDL NMODS ,)

IT _, NplR))

B.II

; <WEBBEP>ANNGRAM.;23 NON 12-JUN-72 9:5_PM PAGE 1:1Z

(PUSH R/WH (AND (CAR V)

(GETR RELVPFLG))

(! (COND

((WRD (WHICHQ HOWMANY)

(CADR (GETR DET)))

(SENDR ANAPHORFLG (COND

((WRD ONES (CADR (GETR N)))

(GETR ANAPHORFLG))

(_ (CADR (GETB S))))))))

(SENDRQ TYPE QRELI

(SENDRQ RELVPFLG T

(. THE QUESTIONED NP IS MADE THE DS SUBJECT AND THE

REMAINDER OF THE SENTENCE IS MADE A RELATIVE CLAUSE

OF TYPE QRZL ON THE SUBJECT)

(SENDR WH (BUILDQ (NP (DET WHR)

#

(NU ÷))

(COND

((WRD ONES (CADR (GETR N)))

(GETR ANAPHORFLG))

(T (GETR N)))

_u))

(ADDL NMODS i)

(TO NP/NP))

(JUMP NP/NP (OR (NOT _)

(AND (WRD TO)

(RFEAT INDOBJ V

(_ THE JUMP NP/NP ARC CAN BE TAKEN IN TWO PLACES,

DEPENDING ON TH5 REGISTERS AND THZ CURRENT WORD)

(VPREP _)

(NOR (NPREP ,)
(WRD lOP FOR))

(WRD IT (CADR [GET_ N)))))

(LIFTR NPFEATURES (RESUM_TAG NP/HEAD))

(COND

((GFTR PARTFLAG)

(LIFTR ANAPHORFLG (SETh N)

2

(* IF _:P OCCURS IN A PARTITIVE CONSTRUCTION, ITS

H_AD I_ LIFTED UP TO THE HIGHER NP FOR FURTHER USE.)

)))))

B.12

; <WEBBZR>ANNGRAM.;23 NON 12-JUN-72 9:5_PM PAGE 1:11

(PUSH PP/ (CAT PREP)

(SENDR V (GETR V))

(ADDL NMODS ,)

(COND

((NULLR PPFLAG)

(SETRO PPFLAG T)))

(T_ NP/HEAD))

(PUSH FOR/NP (WRD TO)

(ADDL NMODS (BUILDQ (COMPL ,)))
(C¢_D

((NULLR PPFLAG)

(SETRQ PPFLAG T)))

(T(NP/HEAD))

(TST R/NIL (AND (GETR PPFLAG)

(SUSPEND I)

(" LOOK FOR

TO-COMPLEMENTS: 'THE WAY

TO DO IT...')

(NOR (WRD (WHAT WHO WHOM WHICH THAT WHOSE))

(GETR QDET)

(AND (WRD BE (GET_OOT • V))

(NOT (EQ • (QUOTE BEING))))))

(, LOOK FOR REDUCED RELATIVES AFTER SEEING A PP.

THE SUSPEND MEANS THAT THE ACTIONS

(INCLUDING THE PUSH) WILL GET DON_ AFTER THE

FOLLOWING JUMP ARC HAS BEEN TAKEN AND LEADS TO A

BLOCK; THF SUBSEQUENT BACKUP WILL CAUSE THE RELATIVE

IN 'THE MAN NEAR THE GIRL I SEE' TO MODiFy 'GIRL'

INSTEAD OF 'MAN' IN THE FIRST PARSE.)

(SENDPQ TYPE BEL)

(SENDR WH (BUILDQ (NP (DET WHR)
+

(NU ÷))

N NU))

(PUSH R/NIL)

(LDDL NMODS ")

(TO NPlR))

(JUMP NP/NP (:_OR (NOT ")

(AND (WBD TO)

(RFEAT INDOBJ V))

(VPREP ")

(NOR (NPREP _)

(WRD OF)))

(, THIS SETS UP THE REGISTER NPFEATURES AT THE LEVEL

ABOVE THI5 SO THAT THE RESUME MACHINERY WILL RETURN

AN EXTRAPOSED RELATIVE CLAUSE TO THIS :OSITION)

B.13

; <WEBBFR>ANNGRAM.;23 NON 12-JUN-72 9:5_PM PAGE 1:12

(LIFTR NPFEATURES(RESHMETAGNP/HEAD))
(C$;ND

((GETR PA_TFL_G)
(LIFTE ANAPHORFLG(GETR N)

2])))

(PUSH _/NIL (NOR (GET_ pPFLAG)

(WRD (WHAT WHO WHOM WHICH T_AT WHOSE))

(GETR QDET)

(AND (WRD BE (GETROOT • V))

(NOT (EQ • (QUOTE BEING)))))

SENDRQ TYPE REL)

SENDR WH (BUILDQ (NP (DET WHB)
+

CNU +))

N NU))

AD?L NMODS _)

T? NP/R))

(PUSH COMPL/ (AND (WRD THAT)

(WRD (A THE)

(CADR (GETR DET))

(_ FOR NOUNS MARKED FACTN (E.G. 'STATEMENT', 'FACT'),

THIS ARC LOOKS FOR A THAT-COMPL_MENT

('THE FACT THAT I ARRIVED...'))

)

(EFZAT FACT_ HEAD))

(ADDL NMODS (BUILDQ (COMPL *)))

(T(NP/NP))

(PUSH COMPL/NTYPE (RFEAT FACTN }lEAD)

(SENDRQ NTYPE THAT)

(kDDL NMODS (BUILDQ (COMPL ,)))

(T? NP/NP)))

(_ LOOK FOR A

THAT-COMPLEMENT WITH

DELETED 'THAT')

(NP/HELDPART

(JUT_P NP/DET T

(JUMP NP/HEAD T

(I A PARTITIVE HAS BEEN

TAKEN OFF THE HOLD LIST

AT STATE NP/QUANT.)

(, LOOK FOR A REGULAR

H£AD: 'OF THESE HOW MANY

MEN WENT ...'))

(_ THE HEAD WAS DELETED; INSERT AN APPROPRIATE

DUMMY: 'OF THESE HOW MANY WENT ,..')

(SETRQ N (P_O ONES))

(SETRQ NU SG/PL)))

B.14

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM PAGE 1:13

(NP/MORE
(CAT ADJ (GETR MORE-MOST)

(ADDL ADJS (BUILDQ (@ (ADJ)

(TC NP/DET)

(J)

#)

(CORD

((WRD MORE MORE-MOST)

(QUOTE (COMPARATIVE)))

(T (QUOTE (SUPERLATIVE))))))

(* NP/MORE RFCOGNIZES TWO-WORD INFLECTED ADJECT:VES

AND PAST PARTICIPLES. E,G. "MORE BRECCIAT_D",

"MORE METALLIC", "MOST REPRESENTATIVE")

(CAT V (AND (GETP MORE)

(GETF PASTPART))

(ADDL ADJS (HUILD0 (ADJ (PARTICIPLE #)

COMPARATIVE)

LEX))

(TC NP/DET)))

(NP/N

(CAT LI?T (AND (WRD SG NU (. ADJUST NU FOR AN

ALTERNATIVE PLURAL

SPECIFICATION 'BOY

(S) ')

(_ A TENTATIVE HEAD HAS BEEN FOUND, BUT IT MAY BE

ONLY T_E FIRST PART OF A NOUN-NOUN OR

NOUN-ADJECTIVE-NOUN SEQUENCE,)

)

(WRD (S ES)

(CAR *)))

(SETRO NU SG/PL)

(T/ NP/N))

(WRD / T

(_ '/' FOLLOWS THE I ENTATIVE HEAD, INDICATING THAT

IT WA_ THE FIRST TERM OF A RATIO)

(T_ NP//))

(CAT PC$S T

(_ POSS ('S) MARKS THE PRECEDING HEAD AS A GENITIVE

MODIFIER ON A HEAD WHICH IS TO FOLLOW.

SET Up THE PROPER STRUCTUR_ AND LOOP TO NP/DET,)

B.15

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:5_PM PAGE 1:1_

(SETR ADJS (BUILDO ((POSS #))
(NPBUILD)))

(SETRQ DET THE)
(Tf _ NP/DET))

(JUMP NP/HEAD (CAT PREP)
(COND

((GETR NU')
(SETR NU (GETR NU')

(_ AS SOONAS WE HAVE SEEN A PREPOSITION, WEKNOWWE
HAVE SEEN THE HEAD. THE HEAD OF THE PP INDICATING
THE SET OVER WHICH "AVERAGE...., MAXIMUM", _TC. RANGE
(SEE NP/DET) IS ALWAYSPLURAL.
THIS INDICATION IS PASSEDDOWNIN THE REGISTER NU',)

)))
(SETR HEAD (CADR (GETR N))))

(CAT N (NOR (WRDPL NU)
(_Q LEX (OUOTE BEING)))

(J A NEWHEADIS FOUND, IMPLYING THAT THE PRECEDING
HEAD iS A NOUN-MODIFIER.)

(ADDL ADJS (BUILDQ (ADJ +)
N))

(SETR N (BUILDQ ('_ _)))

{SETR NU (GETF NUMBER))

(T _ NPI_))
(PUSH NPR/ (NOP (CAT V)

(CAT pREP)

(NULL STRING))

(ADDL ADJS (BUILDO (ADJ ÷)

N))

(SETR N *)

(SETRQ NU SG)

(TC NP/N))

(CAT ADJ (NOT (WRD PL NU))

(ADDL ADJS (BUILDQ (ADJ +)

N))

(ADDL ADJS (5UILDO (S (ADJ)
#

)

FEATURES))

(T[NP/DET))

(, THE NEW HEAD IS A

PROPER NOUN MODIFIED BY

THE OLD HEAD.)

(, AN ADJECTIVE AFTER A

TENTATIVE HEAD IMPLIES

AN N-ADJ-N STRUCTURE.)

C')

B.16

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:5_M PAGE 1:15

(CAT V (AND (GETF PRESPART)

(NOT (WRD PL NU))

(NOT (VPARTICLE • (NEXTWRD)))

(NOT (AND (GETR N)

(EQ LEX (QUOTE BEING)))))

(_ A GERUND HERE IS TAKEN AS THE HEAD--A SUBSEQUENT

N WILL MOVE IT TO A PARTICIPIAL MODIFIE_ POSITION.)

(ADDL ADJS (BUILDQ (ADd +)

N))

(SETR N (BUILDQ (N #)

LEX))
(5ETRQ NU SG)

{T> NP/N))

(JUMP NP/HEAD (NOT (CAT PREP))

(SETR HEAD (CADR (GETR N))

)
(C_:ND

((GETR NU')

(SETR NU (GETR NU')))))

(CAT _ (OR (W_D PL NU)

(EO LEX (QUOTE SEING)))

(i SEE EARLIER JUMP

NP/HEAD ARC FOR

EXPLANATION OF NU'.)

{_ A S?ECIAL ARC TO HANDLE N-N MODIFIERS WHERE THE

FIRST NOU}_ IS PLURAL: 'OPERATIONS RESEARCH',

'SYSTEMS ANALYSIS'. THIS MIGHT NOT BE A PRODUCTIVE

PROCESS, IN WHICH CASE THIS ARC I5 UNNECESSARY AND

SHOULD BE REPLACED BY APPROPRIATE COMPOUND

DICTIONARY ENTRIES.)

(ADDL ADJS (BUILDQ (ADd +)

N))

(SETR N (BUILDQ (_ .)))

(SETR NU (GETF NUMBER))

(T NP/N)))

B.17

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:5_PM PAGE 1:16

(NP/NP
(WRD , (NULLR NPLIST)

(. THIS A_C STARTS OFF A SZRIES OF COMMA-CONJOINED

NP'S, WHICH ARE ANALYZED BY PUSHING FOR NPIS FROM

WITHIN THE FIRST NP OF THE SERIES,

NPLIST IS ONLY EMPTY FOR THE TOP-LEVEL NP

(THE FIPST ONE) OF THE SERIES, SO THAT ALL NP PUS_ES

ARE DONE FROM THE TOP LEVEL, THAT IS, THE SECOND NP

CAN'T PUSH FOR THE THIRD, THE THIRD FOR THE FOURTH,

ETC. AT THE TOP-LEVEL, THE SUBSEQUENT ITEMS IN THE

SERIES ARE COLLECTED IN THE REGISTER SODY.)

(SETR BODY (LIST (NPBUILD)))

(TO NP/,))

(CAT LIST T

(* THIS IS A TRICKY ARC--IT RECURSlVELY CALLS THE

PARSER TO ANALYZE THE LIST OF NON-RESTRICTIVE

MODIFIEPS, BEGINNING AT STATE PAREN/ IN THE GRAMMAR.

THE PARSE IS ADDED TO NR, AND IF IT IS NIL, WE

ABORT.)

(ADDL NR s

(- THE ANALYSIS OF tHE CURPENT NP HAS BEEN

ESSENTIALLY COMPLETED. A COMMA AT THIS POINT CAN

SIGNIFY THAT THIS IS THE BEGINNING OF A SERIES OF

CONJOIEED NP'S (ARC I), WHILE A PARENTHETIC

EXPRESSION (A LIST) IS INIERPRETED AS A

_:ON-RESTRICTIVE MODIFIER ON THIS NP

(E.G. 'FIBROUS MATERIALS (ASBESTOS, FIBERGLASS) ').

A COLON CAN ALSO INDICATE THE BEGINNING OF A SERIZS

OF NON._ESTRICTIVE ITEMS (ARC 3). THE NORMAL CASE,

HOWEVER, IS TO POP THE NP SO FAR ANALYZED.)

(COND

((NULL (CAR (GETR NR)))

(ABORT)))

(T$ NP/HEAD))

(WRD : T

(T3 NP/NP:))

(' THIS ARC HANDLES

'INFORMATION ON THE

FOLLOWING: RADAR,

LASERS...')

B.18

; <WEBBER>ANNGRAD].;23 MON 12-JUN-72 9:5_PM PAGE 1:17

(POP (GETR POPVAL

(AND (SETR POPVAL (NPBUILD))

(OR (NOT SIFLAG)

(INTERP (GETR POPVAL))

T))))

(, SIMULTANEOUS

INTrBPRETAT£ON OF THE NP

WILL GO ON IF SIFLAG IS

T.))

(NP/NP:

(, CURRENTLY, THE ONLY POSSIBILIT_ AFTER A COLON AT

THE END OF A NP IS ANOTHER NP

(PERHAPS A CONJUNCTION OF NP'S))

(PUSH NP/ T

(ADDL NR .)

(NP/ORD

(PUSH QUANT/ (CAT (QUANT INTEGER ADV COMP)

(J AN ORDINAL INDICATOR, IF PRESENT, HAS BEEN

ANALYZED. AN OPTIONAL QUANTIFIER CAN FOLLOW: 'FIVE

MEN', 'MANY PLANES'. THE QUANTIFIER IS ADDED TO THE

POSTARTICLE STRUCTURE.)

(SETR POSTART (BUILDQ (_ + ")
POSTART))

(T;' NP/QUANT))

(JUMP NP/OUANT T))

B.19

; <WEBBER>At_NGRAM.;23 MON 12-JUN-72 9:5_PM PAGE 1:18

(NP/QUANT

(PUSH PP/ (AND (WRD OF)

(OR (G_TR POSTART

(* THE QUANTIFIER OR ORDINAL

(AND CERTAIN DETERMINERS_ CAN BE FOLLOWED BY A

PARTITIVE CONSTRUCTION, AS IN 'TH_ LAST OF THE

MOHICANS', 'FIVE OF THE BOYS', OR 'HOW MANY OF THE

DOCUMENTS...'. THE PARTITIVE IS USUALLY INTRODUCED

BY THE PREPOSITION 'OF' (ARC 2), BUT FOR SOME

DETERMINERS (E.G. 'ALL', 'BOTH') THE PREPOSITION MAY

BE MISSING (ARC 2); ARC 3 RETRIEVES A PARTITIVE [HAT

WAS ANALYZED AND PUT ON THE HOLD LIST AT STATE

S/--'OF THE BOYS HOW MANY ...'.

WHEN THERE IS A PARTITIVE, IT IS ADDED TO THE LIST

OF NOUN MODIFIFRS, AND THE HEAD OF THE NP BECOMES

THE DUMMY ELEM_NT 'ONESI.)

(WRD (WHICHQ HOWMAN_ _OWMUCH ALL SEVERAL MOST)

DET)))

(SENDR PARTFLAG T1

(ADDL NMODS *)

CSETR DET '(DETBUILD))

(SETRO N (PRO ONES))

(SETRQ NU SG/PL)

(T_ NP/HEAD))

(PUSH PP/PREP (WRD (ALL BOTH)

DET)

(SENDRQ PREP OF)

(ADDL NMODS *)

(SETR DET (DETBUILD))

(SETRQ N {PRO ONES))

(SETRQ NU SG/PL)

(TC _ NP/HEAD))

(VIR PP (AND (GETF PARTITIVE)

(CR (GETR POSTART)

(WRD (WHICHQ HOWMANY HOWMUCH ALL SEVEHAL)

DET)))

(SETH DET (DETBUILD))

(ADDL NMODS *)

(T{ NP/HELDPART))

(JUMP NP/DET T

(SETH DET (DETBUILD))))

B.20

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:5_PM PAGE 1:19

(NP/R

(PUSH R/ (WRD (WHO WHOM WHICH THAT))

(SENDRQ TYPE REL)

(* A RELATIVE CLAUSE HAS BEEN ANALYZED.

THIS MAY BE FOLLOWED (OPTIONALLY) BY ANOTHER FULL

RELATIVF (NOT _EDUCED).)

(SENDR WH (BUILDQ (NP (DET WHR)
+

(NU *77

N NU))

(ADDL NMODS ,)

(JUMP NPINP T))

(Np/SUPERLATIVE

(CAT ADJ IOn (GETA MO_E-MOST)
(G_TF SUPERLATIVE

(, DEFINITELY DETERMINED INFLECTED ADJECTIVES PARSE

INTO A HIGHER AND A LOWER NP NODE.

TH_ HIGH_K _;ODE CONTAINS THE INFLECTED ADJECTIVE KS

IT_ HE_D; THE LOWER NODE, THE SET OVER WHICH THE

INFLECTKD ADJECTIVE RANGES)

(GKTF COMPARATIVE))

(SETR N (_UILDQ (e (N) (')

(cOND
((WBD MORE-MORE-MOST)

(QUOTE (COMPARATIVE)))

(T (QUOTE (SUPERLATIVE))))))

(SETBQ NU SG)
(SETR DET (DETBUILD))

(JUMP NP/ORD T))

B.21

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:b_PM _AGS 1:2_

(NP/SUPERSET
(PUSH PP/ (W_D (OF AMONG))

(SEND_ V (GETR V)

(* SEE Np/SUpEHLATIVE ; VIR PP ARC ALL3W5

SUPERLATIV£$ TO PICK UP FRONTED PP'Z)

)

(I_DDL NMOD$ _)

(SETH HEAD (CAD_ (GETR N)))

((OR (NULLR ANAPHORFLG)

(EQ ((4£TR _NAPHORFLG)

T_

(SZMNET (GETR ANAPHORFLG)

(HFAD (CADDR ,)))))

(T (ADDL NnODS (SUILDQ (PP (PREP OF)
(NP (DET THe)

iN #)

(_U PL)))

(GETB ANAPHORFLG)))))

(T7 NP/HE&D))

(PUSH pp/PREP (AND STRING (NOT (CAT PREP)))

(! (COND
((GETR NN_PHORFLG)

(T (SKNDHQ DET NIL))))

(SE_DRQ Nu_ PL)

(SENDRQ PR[P OF)

{SENDR V (GET_ V))

{ADDL NMOD$,)

(SETH HE_D (CADR (GETH N)))

{T3 NP/HE_D))

(VIR PP (GETF _ARTITIVE)

(ADPL NMODS ,)

(SETH HEAD (CADR (GETB N)))

(T% NP/HEAD))

(JUMP NP/HEAD (AND (NOT (WRD OF))
(GZIR A_PHORFLG))

(SET_ HEAD (CADN (GETR N)))

(ADDL NMODS (BUILDQ (PP (PREP OF)
(NP (DET ThE)

(GETB ANAPHOBFLG))))

(JUMP NP/HEAD (OR (WhD OF)
(NULLR ANAPHORFLG))))

B.22

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:5_PM PAGE 1:21

(NPR/

(HEM (SAMPLE ROCK LINE LINE# APOLLO)

T

(SETR TITLE *)

(* START OF THE PROPER NOUN NETWORK,

_VENTUALLY, THIS WOULD INCLUDE A FULL GRAMMAR FOR

THE SYNTAX OF PROPER NAMES--TITLES, ABBREVIATIONSp

INITIALS, ETC. CURRENTLY, WE RECOGNIZE CERTAIN WORDS

AS TITLES IF THEY ARF FOLLOWED BY A WORD IN THE NPR

CATEGORY; OTHERWISE, THIS NETWORK WILL ONLY

PZCOGNIZE ISOLATED NPR WORDS AS PROPER NOUNS.)

(TI NPR/TITLE))

(CAT NPR T

(SETR NPR (LIST "))

(TO NPR/NPR)))

(NPR/NPR

(POP (BUILDQ (_ (NPR)

+)
NPR

(, END OF THE pROPER NOUN NETWORK,

ARC I POPS THE APPROPRIATE STRUCTURE;

ARC 2 YNSURES THAT THE 5YSCONJ FACILITY WILL NOT _E

INVOKED AT THIS LEVEL, THAT IS, THAT A CONJUNCTION

OF NPR'S WILL BE ANALYZED AS A CO_JUNCTION OF NP'S

WITH NPR HEADS, NOT AS A SINGLE NP WIIH A CONJOINED

NP_ HEAD.)

)

T)

(CAT CSNJ NIL))

CNPR/TITLE

(CAT _PR T

(SETR NPR (BUILDQ (+ *)
TITLE)

(, HERE IF A TITLE WORD WAS FOUND.

PICK UP THE FOLLOWING NPR AND BUILD THE CORRECT

STRUCTUPE.)

)
(T" _IPR/_._R)))

B.23

; <WEBBER>ANNG_AM.;23 MON 12-JUN-72 9:5_PM PAGE 1:22

(NPU/;
(CAT CGNJ (OR (NULLR CONJ

(_ HERE IF A ';' WAS FOUND IMMEDIATEL_ AFTER THE

SUBJECT NP. THIS MARKS THE SENTENCE A5 A NOUN-PHRASE

UTTERANCE CONSISTING OF A SEQUENCE OF CONJOINED

NP'S. (SFMI-COLON CONJOINING IS NOT ALLOWED WITHIN

THE NP'S OF A REGULAR SENTENCE.) THE STRATEGY HERE

IS SIMILAR TO THAT USED FOR SEMI-COLON CONJUNCTION

AT THE END OF FULL SENTENCES

(STATES S/; AND S/;S) AND SOMEWHAT RESEMBLES THE

OPERATION OF COMMA-CONJOINING WITHIN NP'S

(STATES NP/, AND NP/,NP))

(EQ • (GETR CONJ)))

(COND

((NULLR CONJ)

(SETR CONJ.)))

(TO NPU/_))

(PUSH NP/ T

(ADDL NPU .)

(TO NPU/_NP)))

(NPU/_NP

(WRD ; T

(TO NPU/;

(. A SEQUENCE OF SEMICOLON-CONJOINED _P'S IN AN NPU

CAN BE FOLLOWED BY A ''' INDICATING THAT ANOTHERI ,

ITEM IS TO FOLLOW, OR ELSE THE END OF T_E STRING

MUST HAVE BEEN REACHED, IN WHICH CASE THE FINAL NPU

STRUCTURE IS BUILT.)

))

(POP (BUILDQ ($ NPU (e (NP #)

((GFTR CONJ))
(T {OUOTE OB)))

(BEV_RSE (GETR NPU)))

(_TULL STRING)))

B.24

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:5_PM PAGE 1:23

(PAREN/
(PUSH NP/ T

(SETR PAREN •

(* THIS IS THE INITIAL STATE FOR THE GRAMMAR WHICH

ANALYZES POST NOMINAL PARENTHETIC EXPRESSIONS.

CURRENTLY, ONLY A NOUN-PHRASE CAN OCCUR AS SUCH A

NON-RESTRICTIVE MODIFIER, BUT THE GRAMMAR SHOULD BE

EXPANDED HERE TO INCLUDE SEQUENCES OF ADJECTIVAL

PHRASES.)

(TC PAREN/PAREN)))

(PAREN/PAREN

(POP (GETR PAREN5
T

_r

55

(, THE FINAL STATE OF THE PARENTHETIC-EXPRESSION

GRAMMAR; JUST POP WHATEVER WAS IDENTIFIED.

OF COURSE, WE MUST HAVE EXHAUSTED THE STRING WITHIN

THE PARENTHESES.)

(PP/

(CAT PREp T

(SETR PREP

Ct FIRST STATE OF THE PREPOSITIONAL PHRASE NETWORK.

ALL PUSHES TO THIS STATE MAKE SURE THAT THE CURRENT

WORD IS A PREPOSITION, SO WE CAN OMIT THE TEST

HZRE.)

(TO PP/PREP)5)

(PP/NP

(SPOP (BUILDQ (PP (PREP +)

+5
PREP NP

(, HERE AFTER THE PREP AND NP HAVE HE_N FOUND.

THE PP STPUCTURE IS BUILT AND SPOPPED, THAT IS,

POPPED TO THE LEVEL DETERMINED HY THE SELZCTIVE

MODIFIE_ PLACEMENT FACILITY.

SINCE THE DICTIONARY DOES NOT YET CONTAIN SMP

F_ATURFS, THE DEFAULT PLACES THE PP IN THE LOWEST

CONSTITUENT IT CAN BELONG TO.)

T))

B.25

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:5_PM PAGE 1:2_

(PP/PREP

(WRD : T

(T! PP/PREP (. AFTER PICKING UP THE

_REP, FIND THE NP

?REPOSITI_NAL OBJECT.))

(_ IF THE PREP IS FOLLOWED BY ':', SKi_ PAST IT AND

LOOK FO_ THE OBJECT IN THE REGULAR WA_.

E.G. 'INFORMATION ON: RADAR, LASEHS...' IS PROPERLY

ANALYZFD IF THE COLON IS IGNORED.)

(CAT QDET (NULLR TYPE

(, /HE CAT QDET AND CAT QWORD ARCS CATCH QUESTIONS

IN FRO[_TED PP'S. E._, "IN WHICH...")

(SETR DET ,)

(Tt PP/ODS_))

(CAT OWORD (NULLR TYPE)

(SETR NP *)

(LIFTR NP (GFTR NP))

(TO pP/NP))

(PUSH NP/ T

(! (COND

((GETR PARTFLAG

(. WE MUST PASS INFORMATION FROM A HIGHER NP INTO

THE NP WITHIN THE PP INDIRECTLY)

(SENDR PARTFLAG T))))

(SENDR RELVPFLG (GETR RELVPFLG))

(SENDR V (GETR V))

(5ENDR DET (GETR DET))

(SENDR NU' (GFTR NU'))

(, NORMALLY, TH_ OB_h_T O_ Tff_ PR_P W_L& B5 FOUND AS

AN ORDINARY NP STARTING AT THIS STRING POSITION.)

B.26

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:5_PM PAGE 1:25

(SETR NP _)
(T,_ PP/NP))

(VI_ NP T

(, THE OBJECT MIGHT HAVE BEEN FRONTED, FOR EXAMPLEj
BY RELATIVIZATION OR PASSIVIZATION, L_AVING A
DANGLINGPREPOSITION ('THE STOREI BOUGHTIT IL_
...'); IF SO, THE O_JECT HAS BEEN PLACED ON THE HOLD
LIST BY PREVIOUS STATES_ AND THIS ARC RETRIEVES IT.
THE RESUMEACTION IS NECESSARYTO DEAL WITH A
RELATIVE CLAUSE EXTRAPOSED FROM THE FRONTED OBJECT

AND LEFT IN THIS POSITION ('THE STORE I BOUGHT IT IN

WHICH USUALLY HAS GOOD PPICES...'))

(RESUME)

(SETR NP ,)

(T PP/NP))

(VIR ADV (AND (W_D WHERE (CADR _))

(W_D (FROM TO AT)

PREP))

_r

(_ IF THE DANGLING PREP IS A LOCATIVE ONE AND THE

_ORD 'WHERE' WAS FOUND AND HELD BY PREVIOUS STATES

(E.G. S/) WE RETRIEVE IT HERE AND BUILD THE

APPROPRIATE PP STRUCTURE,)

(SETR NP (BUILDQ (NP (DET WHQ)

(N PLACE)

(NU SG))))

(TZ pP/NP))

(VIR ADV (AND (WRD WHEN (CADR "7)

(WRD AT PREP))

(_ IF WE HAVE _ DANGLING TEMPORAL PREP AND WE

PREVIOUSLY ENCOUNTERED AND HELD 'WHEN', W7 BUILD A

TIME PP.)

(SETR NP (BUILDO (NP (DET WHQ)

(N TIME)

(NU SS))))

IY" pP/NP)))

B.27

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:5_PM PAGE 1:26

(PP/QDET
(PUSH NP/ART T

(SENDR DET (GETR DET)

(, PUSH FOR THE REST OF THE NP FOLLOWINGTHE QDET IN
THE FRONTEDPP. E.G.
"IN WHICH SAMPLESDOES STRONTIUMOCCUR?")

)
(SETR NP ")

(LIFTR NP (GETR NP))

(TO PP/NP)))

(QUANT/

(CAT COMP (NULLR ADV

(, START OF QUANTIFIER NETWORK FO_ NP DETERMINER

STRUCTURE. QUANTIFIER CAN INCLUDE A COMPARATIVE

('MORE THAN') OR ELSE JUST BEGIN WITH AN INTEGER OR

A WORD IN CATEGORY QUANT. CURRENTLY, MOST WORDS IN

THIS CATEGORY ARE ALSO IN CATEGORX DET, SO THEY

APPEAR AS DETERMINERS IN THE FIRST PARSES.)

(SETR ADV ,)

(TO QUANT/))

(CAT OUANT T

(SETR NUMB _)

(TO QUANT/QUANT))

(CAT INTEGER ?

(SETH NUMB _)

(TC QUANT/QUANT)))

(QUANT/QUANT

(TST UNIT-TST (MARKER UNIT .)

(SETH UNIT i

(= AFTER THE QUANTIFIER HAS BEEN PICKED Up, A U_IT

OF MEASURE CAN BE SPECIFIED

('FIVE GALLONS', 'MORE THAN 3 MM'). POTENTIAL U_IT5

HAVE A UNIT MARKER, WHICH IS TESTED ON THE ARCS F_OM

THIS STATE.)

(SETRQ FLAG MUCH)

(TC QUANT/U_IT))

(JUMP QUA_T/U_:IT (NOT (MARKER UNIT .))

(SETRO FLAG MANY)))

B.28

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:b_PM PA&E 1:27

(QUANT/UNIT

(POP (COND

((GETR ADV)

(BUILDQ ((COMP (ADV +)
(_ (NP (INTEGER +))

_))

+)
ADV NUMB (COND

((GETR UNIT)

(BUILDQ ((UNIT +))

UNIT))

(T NIL))

FLAG)

{* END OP QUANTIFIER NETWORK;

BUILD THE CORRECT STRUCTURE.

IF A UNIT IS PRESENT, THE STRUCTURE 15 FLAGGED WITH

THE WORD 'MUCH', OTHERWISE 'MAN_'.

ALSO, IF THERE WAS A COMPARATIVE, THE ROOT OF THE

CUANTIFIER STRUCTURE IS THE NODE 'COM_'.)

T))

)

(T (BUILDQ ((_ (NP (INTEGER +))

4)

+)

NUMB

(COND

((GETR UNIT)

(BUILDQ ((U_;IT +))

UNIT)))

FLAG)))

(RI

))

(MEM (WHICH THAT WHO)

T

(TC _ R/WH

{. START OF RELATIVE CLAUSE NETWORK, GIVEN THAT WE

ARE LOOKING AT A RELATIVE PRONOUN

('WHO', 'WHAT', '_HICH') OR A P_EP FOLLOWED BY A

RZLATIVE P_ONOUN.)

(wRD WHOM T

(* FOR 'WHOM', WE KNOW THAT THE WH-NP 15 NOT TH_

_USJECT OF THE RELATIVE CLAUSE--WE HO_D IT TO BE

PICKED UP LATER.)

B.29

; <WEBBER>ANNGRAM.;23 NON 12-JUN-72 9:5_PM PA_E 1:28

(HCLD (GETR WH))
(SETR WH NIL)
(Te R/WH))

(PUSH NP/ (WRDWHOSE)

(= 'WHOSE' MEA_S THAT THE WH-NP IS A POSSq_SIVE FOR
AN NP AFTER THE 'WHOSE')

(SENDR ADJS (BUILDQ ((POSS +))
_H))

(SETR WH *)

(T_ P/wH))

(CAT PREp T

(SETR PREP .)

(TO R/PREP)))

(R/NIL

(CAT V T

(C:ND

((AND (GFTF PASTPART

(. HERE TO LOOK FOR A REDUCED R_LATIV_--WITHOUT A

R[LATIV_ PRONOUN. DETERMINE THE TYPE OF SENTENCE,

DISPOSE OF THE WH-NP PROPERLY, THEN TRANSFER I_TO

THE CORRECT PLACE IN THE S/ GRAMMAR TO ANALYZE THE

REST OF THE CLAUSE.)

(VPASSIVE _))

(HOLD (G_TR _H))

(SETR SUBJ (BUILDQ (NP (PRO SOMETHING)))

(_ A PRESENT PARTICPLE MEANS THE RELATIVE CLAUSE _S

A P_OGRES$!VE SENTENCE WITH THE W_-NP AS SUBJECT;

A PAST PARTICIPLE MEANS THE RELATIVE CLAUSE IS

PASSIV!ZED, AND THE WH-NP IS HELD AS THE SUBJECT OF

A PASSIVE SENTENCE USUALLY IS AT STAT_ VP/Vo)

)

(SET_ AGFLAG T))

((GETF PBESPART_

(SETR SU_J (GETR WH))

(SETRQ ASPECT (PROGRESSIVE)))

(T (ABORT)))

(SETR V *)

(TO VP/V)_

(PUSH NP/ T

(. AN !_P H_RE IS THE SUBJECT OF THE RELATIVE CLAUSE;

THE WH-Np IS EITHER THE OBJECT, INDIRECT OBJECTm OR

PR_P OBJECT--HOLD IT UNTIL WE CAN D_TERMINE WHICH.)

B.30

; <WEBBER>ANNG_AM.;23 MON 12-JUN-72 9:b_M PAGE 1:29

(HOLD (GETR WH))

{SETR SUBJ .)

(TO S/NP))

(WRD THERE T

(SETRQ THEPE T)

(SETR SUBJ (GETR WH))

(T: S/NP))

(CAT ADJ T

(* POST-NOMINAL ADJECTIVES ARE PROCESSED AS REDUCED

RELATIVE COPULAR SENTENCES.

'IN_'OR_ATION AVAILABLE' IS ANALYZED AS 'INFORMATION

WHICH IS AVAILABLE')

(SETR SUBJ (GETR WH))

(SETRO V B_)

(SETR OBJ (BUILDQ (_ (ADJ)

)

FEATURES))

(TO VP/NP))

(CAT ADV T

(ADDL VMODS (BUILDQ (ADV .)))

(T? R/NIL)))

(,)

(R/PREP

(MEM CWHICH WHOM)
T

(ADDL VMODS (BUILDQ (PP (PREP +)

+)

PR_P WH)

(. LOOKING AT PELATIVE PRONOUN AFTER THE PREP.

IF THE R_LATIV_ PRONOUN IS 'WHICH' OR 'WHAT, THE

WH-NP IS THF OBJECT OF THE PREP.

FOR 'WHOSE', THE PREP OBJECT IS A NP _EGINNING WITH

'WHOSE' AND HAVING THE WH-NP AS A POSSESSIVE

MODIFIER. IN EITHER CASE, A PP IS BUILT AND ADDED TO

THE VERB MODIFIERS OF THE RELATIVE CLAUSE.

THIS STATE ALSO GETS THE STRING IN PHASE WITH PATHS

THAT WENT DIRECTLY FROM R/ TO R/WH.)

B.31

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:b_PM PAGE 1:30

)

(SETR WH NIL)

(TL R/WH))

(PUSH NP/ (WRD WHOSE)

(SENDR ADJS (BUILDQ ((POSS ÷))

WH))

(ADDL VMODS (BUILDQ (PP (PREP ÷)

,)

PR_P))

(SETR WH NIL)

(TO R/WH)))

(R/WH

(PUSH PP/ (CAT PREP)

(ADDL VMODS .)

(TO R/WH)_

(PUSH NP/ (NOR (CAT V)

(GETR RELVPFLG))

(CCND

((GETR WH)

(HOLD (GETR WH))))

(SETR SUBJ .)

(TC S/NP))

(WRD THERE T

(SETR THERE T)

(SETR SUBJ (GETR WH))

(TO S/NP))

(JUMP S/NP (AI_D (GETR WH)

(CAT v))
(SETR SUBJ (GET_ wH))))

(s/

(juMP S/Q (OSTART)

BASICALLY, THIS STATE TRIES TO DECIDE WHAT TYPE OF

SENTENCE WE HAVE: QUESTION, INTERROGATIVE, OR

IMPERATIVE. THai ARCS SET THE TYPE REGISTER AND

TRANSFER TO STATES DESIGNED TO HANDLE THE D_FFERENT

CONSTRUCTIONS. CERTAIN VER5 MODIFIERS MAY OPTIONALLY

PRECED_ THE MAIN BODY OF THE SENTENCE A_D PARTITIVE

CONSTRUCTIONS MAY HAVE BEEN FRONTED FROM A NOUN

PHgASE; TH_SE CONSTITUENTS ARE ANALYZhD By LOOP£NG

THROUGH S/.)

(. QSTART IS TRUE FOR THE SMALL SET OF WORDS THAT

CAN START QUESTIONS.)

B.32

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM PAGE 1:31

(SETRO TYPE Q))
(WRDPLSASE (NULL STACK)

(ADDL VMODS(BUILDQ (ADV PLEASE)))
(TO S/IMP))

(JUMP S/IMP

(" AT THE TOP LEVEL,
'PLZASE' USUALLY
SIGNIFIES THE BEGINNING
OF AN IMPERATIVE,)

(. AN IMPERATIVE CAN OCCUR ONLY AT THE TOP LEVEL;

IT USUALLY BEGINS WITH AN UNTENSED VERB: 'GIVE ME

aeo |)

(AND (CHECKF V UNTENSED)

(NULL STACK)))

(JUMP S/DCL (I;OR (QSTART)

(CAT PREP)

(NULL STRING))

(. THE BEST TEST FOE THE BEGINNING OF A DECLARATIVE

IS THAI IT NOT BE THE BEGINNING O_ A QUESTION.)

(SETRO TYPE DCL))

(CAT ADV (RFEAT N}_GADV)

(, A NEGATIVE ADVER_ ('HARDLY', '_ARELY') USUALLY

INVOLVES SUBJECT-VERB INVERSION WHEN IT OCCURS AT

THE BEGINNING OF A SENTENCE,

THE TYPE IS STILL 'DCL'_ BUT WE GO TO STATE S/_P TO

PICK UP TH_ VERB FOLLOWING THE ADVERB

('BARELY HAD HE LEFT ...'), SUBSEQUENT ANALYSIS

RESEMBLES THE PROCESSING OF YES-NO QUESTIONS.)

CADDL VMODS (BUILDQ (ADV m)))

(SETRO TYPE DCL)

_T__ S/NP))

(CAT ADV T

(ADDL VMODS (BUILDQ (ADV =)))

(T_ Sl))

(PU5H PP/ (WRD OF)

(, A PARTITIVE EXPRBSSION MAY HAVE _EEN FRONTED

('OF TH_ MEN HOW MANY ...'). ANALXZE IT HERE, BUT

HOtD IT (WITH ?HE FEATURE 'PARTITIVE') TO BE PICKED

UP AT STATE NP/QUANT IN THE FIRST NP.)

B.33

; <WEBBER>ANNGRAM.;23 NON 12-JUN-72 9:5_PM PAGE 1:32

(HCLD • (OUOTE ((PARTITIVE))))

(T_ S/))

(PUSH PP/ (CAT PREP)

(, IF THERE ZS A QWORD OR QDET IN THE O_JECT OF TME

PP, IT BECOMES THE DS SUBJECT IN S/QPI)

(HOLD • (QUOTE ((FRONTED))))

(TO S/QPI)))

(S/;

(CAT CONJ (OR (NULLR CONJ

(" A ,_t WAS FOUND AT THE END OF THE TOP-LEVEL S,

INDICATING A SEQUENCE OF SEMICOLON CONJOINED

SENTENCES, WITH REAL CONJUNCTIONS POSSIBLY FOLLOWING

THE SEMICOLONS. WE PICK UP THE CO_JS IF PRESENT, AND

PUSH FOR THE FOLLOWING S, WE KEEP THE SEQUENCE OF

S'S IN SBODYo NOTE: TME STBATEGX MERE IS ALSO USED

FOR SEMICOLON CONJOINED NPU'S.)

(ZQ • (G_TR CONJ)))

(. IF WE FIND A CONJ, EITHER IT MUST bE THE FIRST

ONZ _NZOUNT_RED CONJOINING _ME S'S, OR IT MUST BE

TME SAM_ kS PR_VIOUSL_ ENCOUNTERED ONES.

THUS WE ACCE?I _ 'S; AND S; AND S' AND 'S;

$_ AND S', BUT NOT 'S_ OR S;

AN_ S'.)

(SETR CON3 .)

CPUSH 5/ T

(ADDL SBODY .)

(T '_ S/;S)))

B.34

; <WEBBEE>ANNGRAM.;23 NON 12-JUN-72 9:b_Pi_ PAGE 1:33

(S/;S
(WRD : T

(TC S/;

(, HERE AFTER pROCESSINGONE S £N A SERIES OF
SEMICOLONCONJOINEDS'S. IF THE CURRENT WO_D IS ';'

THEN ANOTHER S OR CONJ FOLLOWS--GO TO STAT_ S/;.

OTHERWISE, POP A COORDINATE LIST OF THE ID£NTIFIED

S'S. NOTE: IF THE END OF THE SEBI_5 IS REACHED WITH

NO CONJ, THE DEFAULT CONJ 15 'OR'.)

))
(POP (BUILDQ (@ (S #)

#)

(COND

((3ETB CONJ))

(T (QUOTE OR)))

(REVEPSE (GETR SBODY)))

T))

(S/AUX

(CAT NEG (NULLP NEG)

(. HERE AFTER FINDING THE FIRST V_RB, WHICH MIGHT

HAVE BEEN THE _AIN VERB OR AN AUXILIARY,

LOOP FOR AN OPTIONAL NEG (_NOT') AND UNDO

,DO_SUPPORT _ IF NECESSARY. THEN IF WE ALREADY HAVE

THE SUBJECT, GO TO VP/V IF IT AGREES WITH THE VERB;

IF _E HAVEN'T IDENTIFIED THE SUSJECT

{BECAUS_ OF SUbJECT-VERB INVERSION) GO TO S/NO-SUBJ

TO FEND ONE.)

(COND

((WRD DO MODAL)

(SETR MODAL NIL)))

(SETRQ NF:G NEG)

(T< S/AUX))

(JUM_ Vp/V (OR (AND (GETB 5UBJ)
(p_CHECK (GET_ SUBJ)

(GEYR PNCODE)))

(GETR THERE)))

(JUMP 5/NO-SUBJ (NOB (GETR SUBJ)
(GETR THERE))))

B.35

; <WEB_E_>ANNGRA_.;23 _ON 12-JUN-72 9:54_M _A&E 1:3_

(S/DCL
(_RD THERE T

(SETR THE_F T)

(. WETHINK THIS IS A DECLARATIVE SENTENCE.
IT MUST BEGIN WITH A SUBJECT NP, A SUBJECT
COMPLEMENT('TO HAVE THE INFORMATION iS IMPORTANT'),

OR 'THERF' IF THERE-INSERTION HAS OCCURRED

(WE MUST LATER FIND 'BE _ OR 'EXIST'))

(TC S/NP))

(PUSH NP/ T

(SETR SUBJ _)

(TO S/NP))

(PUSH COMPL/ (ON (WRD (FOR TO THAT))

(AND (WRD TO (NEXTWRD))

(CAT NEG)))

(. THEBF _RE _ TYPES OF SUBJECT COMPLEMENTS: 'F _R ME

TO GO...', 'THAT I _ENT ...', '_0 GO ...', 'NOT TO

CO...'. THE PUSH IS PERMITTED O_LY IF WE HAVE AN

PPROPRIAT COMPLEMENIIZER.)

(SETR SUBJ .)

(T? S/NP)_)

(S/HOW

(CAT ADO T
HeLD (BUILDQ (ADJ ")))

_ LD (551%DQ (PP (PIEP 20)

(NP (DET WHQ)

(N DEGREE]

(NU SG)))))

Ti: SI_P

(* RECOGNIZES "HOW<ADJ>IS... °'

_ND "HOk <ADV><AUX>...". THE ADdECTIVE, ADVERB AND

THE WORD "HOW" ARE ALL HELD FOR LATER.)

(CAT ADV T

(H?LD (BUILDQ (ADV J)))

_H_LD (BUILDQ (PP (PBEP TO)

(NP (DET WHU)

(N DEGREE)

(NU SG)))))

(T: S/NP)))

B.36

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:5_PM PAGE 1:35

(S/IMP
(CAT V (GETF UNTENSED

(, WE RECOGNIZE AN IMPERATIVE SENTENCE, AND SET UP

REGISTERS ACCORDINGLY. THE SUBJECT IS 'YOU' AND I HE

TENSE IS 'PRESENT' WE SET THE V KND GO TO VP/HEAD
TO PICK UP POST-VERB CONSTITUENTS.)

_SETRO TYPE IMP)

{SETR SUBJ (BUILDQ (NP (PRO YOU))))

(SETR V J)

(SETR HEAD _)

(SETRQ TNS PRESENT)

(T_ VP/HEAD_))

(S/NO-SUBJ

(WRD THERE (OR (NULLR WHQ

(_ THERE WAS NO IDENTIFIABLE SUBJECT HEFORE THE

FIRST VERB. THE SUBJECT MIGHT B_ HERE IN THE STRING

IF S-V INVERSION OCCURRED, OR IT MIGHT HE IN THE WHQ

REGISTER.)

(PNCHECK (GSTR WHQ)

(GETR PNCODE)))

(, ANYTHING IN WHQ MUST AGREE WITH TH5 VERB AND

BECOMES THE SUBJECT ('HOW MANY MEN WERE THERE...').

IF WHQ IS EMPTY ('WERE THERE MANY M_N...') WE M_VE

ON TO S/THERE.)

B. 37

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:54PM PAGE 1:36

(C_ND

((GETR WHQ)

(SETR SUBJ (GETR WHQ)))

((GETR WH)

(SETR SUBfl (GETR WH))))

(SETR THERE T)

ITC S/THERE))

(JUMP VP/V (AND (G_TR WH)

(WRD HAVE V

(, WE CHOOSE TO MAKE WH THE SUBJECT IF THE VERB IS

"HAVE", RATHER THAN LOOKING FOR ANOTHER Np ON THE

FOLLOWING PUSH NP/ ARC. IF HAVE TURNS OUT TO BE AN

AUXILIARY FOLLOWED BY THE REAL SUBJECT , THIS ARC

WILL FAIL (E.G. IF THE SENTENCE WERE

"HOWMANY PEARS HAVE THE BOYS EATEN?"))

(PNCHECK (GETR WB)

(GETR PNCODE)))

(SETR SUBJ (GETR WH)))

(PUSH NP/ T

(, WE LOOK FOR AN NP IN THIS POSITION.

IF NPF_ATURES WAS SET (IN THE PUSH FROM STATE

S/ODET) WE PRESERVE THE OLD VALUE BECAUSE THE

REGISTER WILL BE RESET BY THIS PUSH

(AT STATE NP/HEAD). IF THIS PUSH IS SUCCESSFUL, THE

RESULTING NP MUST AGREE WITH THE VERB AND BECOMES

THE SUBJECT. OUR INDECISION ABOUT THE WHQ IS

RESOLVeD--IT CANNOT BE THE SUBJECT SO IT IS HELD TO

BE PICKED UP AS AN OBJECT OR PRSP OBJECT,

WE ALSO HOLD THE NPFEATURES ASSOCIATED WITH IT, FOR

LATER RESUMPTION. FINALLY, THE DO-SUPPOrT NECESSARY

FOR S-V INVERSION IS UNDONE.)

B.38

; <WEBBER>ANNGRkM.;23 MON 12-JUN-72 9:54PM PAGE 1:37

(! (SETR HOLDNPFEATURE$(GETR NPFEATURES)))
(SENDR AN_PHORFLG(GET_ A_APHORFLG))
(C[IND

((NULL (PNCHECK• (GETR PNCODE)))
(ABORT)))

(SETR SIJBJ ,)
(C_ND

((GETR WHQ)
(HOLD (GETR WHQ)

(GETR HOLDNPFEATURES))))
(COND

((GETR WH)
(HOLD (GETR WH)

(GETR HOLDNPFEATURES))))
(COND

((WPD DO MODAL)
(SETR MODALNIL)))

(TO VP/V))
(JUMP VP/V (AND (GETR WH)

(NOT (WRD HAVE V

(, IF "THERE" AND NP DIDN'T WORK, BUT "WH" AGREES

WITH THE VERB, MAKE THAT THE SUBJECT)

))
(PNCHECK (GETR WH)

(GETR PNCODE)))

(SETR SUBJ (GETR WH)))

(JUMP VP/V

(* IF 'THERE' AND NP DIDN'T WORK bUT WE HAVE A _H_

WHICH AGPE_S WITH THE VERB, WE TRY THAT AS THE

SUBJECT.)

(AND (SET_ WHO)

(PNCHECK (GETR WHQ)

(GKTR PNCODE)))

(SETR SUBJ (GETR WHQ))))

B.39

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:5_PM PAGE 1:38

(S/NP

(POP (GETR POPVAL)

(AND (NOR STPING HOLD STACK (GETR VMODS))

(SETR POPVAL (COND

((WRD Q T_PE)

(BUILDQ (S NPQ +)

WHO))

(T (BUILDQ (S NPU +)

SUBJ))))

(OR (NOT SIFLAG)

(INTERP (GETR POPVAL))))

(, IF WE REACHED THE END OF THE STRING AT THE TOP

LEVEL, WE BUILD A NOUN-PHRASE UTTERANCE AS THE PARSE

OF THE SENT_NC_ ('INFORMATION ON ..,' OR 'WHICH

MAN').)

(, HERE AFTER OUR FIRST ATTEMP AT F_NDING A NP,

EITHER AS A DECLARATIVE SUBJECT OR AS A QUESTION

140_D (WHO).)

(CAT ADV T

(ADDL VMODS (BUILDQ (ADV _))

)

(T_ s/NP))

(CAT V (GETF TNS)

(i WE ATTEMPT

SIMULTANEOUS

INTFRPRETAT_ON IF SIFLAG

IS T.))

(_ AN ADVERB MAY PRECEDE

AN AUXILIARY VERB)

{J USUALLY WE FIND A TENSED VERB AT THIS STRING

POSITION, ZITHER AS THE FIRST WORD IN A QUESTION

_IF WE JUMPED FROM S/Q), 05 FOLLOWING AN NP OR

'THERE'. IF IT IS A MODAL ('WOULD', 'COULD', ETC.)

_ PUT IT IN THE MODAL REGISTERt OTHERWIS_ IN V.

IF 4E ARE IN A WH-QUESTION AND THE VERB WAS NOT AN

AUXILIARY ('WHO HIT JOHN') THEN THE WHQ IS THE

SUBJECT. IN ANY CAST, SAVE THE TENS5 AND

P_RSON-NU_iBER CODE.)

B.40

; <WEBLER>ANNGB_M.;23 MON 2-JUN-72 9:b_PM PAGE 1:39

(COND

((MODAL)

(SETB MODAL _))

(T (SETR V .)))

(CCND

((AND (GETR WHO)

(NOR (MODAL)

(WRD (HAVE BE))))

(SETR SUBJ (GETR WHQ))

(SETR WHQ NIL)))

(CCND

((AND (GETR WH)

(NOB (MODAL)

(WRD (HAVZ SE DO))))

(SETR SUBJ (GETR wS)

(, IF WE APE IN A QREL CLAUSE AND THE VERB WAS NOT

AN AUXTLIARY, THE THE WH PASSED DOWN FROM THE MATHIX

$ENTENC_ IS TH_ SUBJECT.)

)

(SETR PNCODE (GETF PNCODE))

(TO S/AUX)))

(SETR TN5 (GE_F TNS))

(SETR PNCODE (GETF PNCODE))

(T_ SlAUX))

(WRD ; (NULL STACK)

(* AT THE TOP LEVEL, A SEMICOLON nEEE INTRODUCES A

SIOUENCE OF NP'S TO BE PARSED AS CONJOINED NPU'S.

THE GRAMMAR FOR THIS BEGINS AT NPU/;

(ADDL NPU (GETR SUBJ))

(T[NPU/;))

(JUMP $/DCL (WBD ID_ TYPE)

• WE APE IN AN INDIRECT QUESTION, PUSHED TO FROM

VP/HEAD ('I KNOW WHO YOU ARE') THE WH_ REGISTER IS

_ET, BUT INVERSION HASNtT OCCURREd, I.E., THE

BEGINNING OF THE CLAUSE AFTER THE Q-WORD LOOKS LIKE

A DECLARATIVE. ERGO, JUMP TO S/DCL.)

(H'LD (GETR WHQ)

(GETR NPFEATURES))

(SETR WHO N_L))

(JUMP S/AUX (SETR V)))

B.41

; <WEBBER>ANNGRAM.;23 NON 12-JUN-72 9:5_PM PAGE I:_0

(SlO

(WRD HfW T

(T_ S/HOW)

(_ THE SENTENCE BEGINS LIKE A QUESTION.

FOUR POSSIBILITIES: (I) A QWORD--A WH WORD THAT

FUNCTIONS AS A PRONOUN ('WHO','WHAT');

(2) AN AUXILIARY VERB; (3) A Q-DETERMINER

('WHICH MAN'); (4) THE ADVERB "HO_")

(CAT QWORD T

(_ THE DICTIONARY ENTRIES FOR QWOHDS ARE COMPLETE NP

OR ADVERBIAL STRUCTURES. WZ COP_ THEM SO WE DON'T

DESTROY THE DICTIONARY ENTRIES BY FUTURE OPERATIONS,

THE FEATURE 'SUBJ/OBJ' INDICATES THAT THE QWORD CAN

R_PRESENT EITHER THE SUBJECT OR THE O_JECT, SO WE

STORE IT IN WHO UNT£L FURTHER INFORMATION ENABLES US

TO DECIDE. IF THE Q_OBD LACKS THIS _EATURE, THEN IT

CANNOT BE THE SUBJECT ('WHOM'); WE HOLD IT FOR

POST-VERBAL PROCESSING.)

)))

(COND

((GETF SUBJ/OBJ)

(SETR WNQ (COPY ")))

(T (HOLD (COPY .))))

(COND

((GETF ANAPHORIC)

(SETRO A!_APHORFLG T

C' THE QWORD "WHICH" IS ANAPHORiC: IT IMPLIES CHOICE

FROM A P_VIOUSLY MENTIONED SET,

THE QWgRD "WHAT" IS NOT. ANAPHORFLG SIGNALS THIS

DISTINCTION AN5 WILL BE USeD IF THE S_NTENCE

CONTAINS A SUPERLATIVE ADJECTIVE TO D_TERMINE THE

HiT THAT IT NEFDS.)

(T:: S/NP))

(JUMP S/NP (CAT V))

(CA_ C_DEY T

(_ CURRENTLY, THE NP/ LEVEL DOES NOT PROCESS

OUESTION D!_TERMINERS. WE PICK THE_ UP HERE AND PUSH

INTO THE MIDDL_ OF THE NP/ NETWORK FROM S/QDET,

SENDING THE QDET DOWN.)

(SETR DET .)

(T _ S/QDET)))

B.42

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:b_PN PAGE 1:41

(S/QDET

(PUSH NP/ART T

(! (CON_

((NEO (CAR (GETR DET)

(_ DET CONTAINS THE 0-DETERMINER _OUND AT STATE S/Q.

WE PUSH INTO TNE MIDDLE OF THE NP/ NETWORK TO F_ND

THE WHC NOUN-PNRASF. WE INITIALIZE THE REGISTER ODET

TO PREVENT REDUCED RELATIVE CLAUSES WITHIN THE NP:

'THE MAN I SAW...' AND 'HOW MANY _EN WHO I SAW,..'

ARE ALLOWED, BUT 'HOW MANY MEN I SAW...' IS OUT.)

))))

)

(O[JOTE POSTART))

(SE_D_Q RELVPFLG T

(* WE DO NOT RELATIVIZE THE REMAINDER OE THE

SENTENCZ IF THE QDET WAS "HOW MUCH")

SE_D_ DET (GETR mET))

SE_U_Q QDET T)

SETR WHO a)

T _ S/NP)))

(S/QpI

(vIR pP {GETR NP)

SETR _Hp (R_LATIVIZE (COPY _)

(. WE !_AKE A QIIESTIONED NP OR QWOHD IN A F_ONTED PP

THE DEEP S:RUCTURE SUBJECT)

SETRQ TYPE Q)

T" S/QP2))

(JUMP S/ (NOT (GET_ _4p))))

))

(S/QP2

(PUSH S/_P T

(SENDR VMODS (LIST (G_R WHP)))

(_ WH-OUESTIONS ARE PARSED AS NOU_ PHRASE UTTERANCES

WITH TH_ QUEST!ON-NP AS SUBJECT A_D THE REST OF THE

QUESTION IN A _£LATIVE CLAUSE ON THE SUBJECT.

THE TYPE OF THE RELATIVE CLAUSE IS QREL TO

DISTINGUISH IT FROM A SURFACE STRUCTURE RELATIVE.

A WHQ REGISTE_ IS USED INSTEAD OF A SUBJ REGISTER TO

HOLD THE SUBJECT.)

B.43

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:b_PM PAGE I:_2

(SENDRQ TYPE QREL)

(SETR WHQ (APPEND (GETS NP)

(LIST ,)))

(T_ S/VP)_)

(s/s

(POP (GETR POPVAL)

T

(s POPVAL MAY HAVE BEEN

INTFRPRETED IN S/VP)))

(S/SADV

(PUSH NP/ T

(ADDL VMODS (BUILDQ (ADVP (ADV +)

,)
SADV))

(T_ S/VP)))

(S/THERE

(TEST DO T

(SETQ FEATURE5 (GETR NPFE_TURES)

(, THIS STATE IS PLACED BETWEEN S/NO-SUbJ AND V_/V

TO ALLOW FOR EXTRAPOSED RELATIVE CLAUSES WITH THE_E

INSERTION IN QUESTIONS: 'HOW MANY ME_I WERT THERE WHO

BOUGHT ' THE RESUME ACTION WILL MOVE THE
,o, •

R_LATIVE TO ITS PROPER LOCATION IN THE NP, WHICH

THEN BECOMES THE SUBJECT. NOTICE THAT UNLS5S

NPFEATURES HAS BEEN SETp THIS ARC IS ESSENTIALLY A

NO-OP. THUS, SINCE QWORDS DON'T SET NPFEATURES

(QDETS DO), 'WHO WAS THERE WHO DID ...' IS

(PERHAPS ERRONFOUSLY) NOT ALLOWED.)

)

(RESUME)

(C©ND

((GETB NPFEATURES)

(SETH SUBJ *)))

(JUMP VP/V)))

B.44

; <WEBBFR>A_NGRAM.;23 MON 12-JUN-72 9:5_PM PAGE 1:43

(S/VP

(WRD T

(_C S/VP

(, HERE WHEN THE VERB-PHRASE OF THIS S HAS BEEN

NEARLY COMPLETED. THERE MIGHT BS SOME ADVERBS OB

PP'S STILL ON THE HOLD LIST, WHICH WE P_CK UP HER_.

ALSO, AT THE TOP LEVEL, THERE MIGHT BE SOME TERMINAL

PUNCTUATION, OR A SgMICOLON, INDICATING THAT THiS IS

THE FIRST ITEM IN A SERIES OF CONOOINED S'S.

THE USUAL CASE, HOWEVER, IS TO POP THE ANALYZED S

STRUCTURE.)

))

(CAT ADV (RFEAT TRANSADV)

(SETR SADV ,)

_T? S/SADV))

CVIR PP T

(_DDL VMODS _)

(T_ S/VP))

(VIF ADJ (RFEAT COPULE V)

(SETR V (BUILDQ (_ (ADJ) (')

(COND
((WRD (APPEAR SEEM)

V)

(QUOIE (SEEMING)))))

', THE ADJ?CTiVZ PICKED UP IN S/HOW RE_LACES THE

COPULA AS _S VSRB. IF THE COPULA _AS "APPEAR" OH

"SEEM", THai FEA'[UR5 "S_EMING" IS ADDED TO THE _EW

VTRB.)

)

TT s/vP))

(Vl_ _DV T

ADDL VMODS ,)

T': s/VP))

NULL STACK)

(, NOTE THAT A TERMINATING QUESTION MARK OVERRIDES

THE SYNTACTIC TYPE OF THE SENTENCE: 'i NEED SOME

INFORMATION?' [_ k _UESTION, NOT A DECLARATIVE.)

B.45

; <WEBBE2>ANNGRAH.;23 MON 12-JUN-72 9:SaPH PAGE I:_

(CCND
((AND (WRD?)

(NOT (WRD e TYPE)))
(SETRQ TYPE Q)))

(TO S/VP))

(WRD ; (NULL STACK)

(ADDL SBOD¥ (SBUILD))

{TO S/;))

(JUMP S/S T

(SETR POPVAL (SBUILD)

)
(COND

((OR (NOT SIFLAG)

(WRD REL TYPE))

T)
((AND (OR STKCK (NOR STRING HOLD))

(NOT (INTERP (GETR POPVAL))))

(SUSPEND 2)))))

(, THIS ARC ALLOWS FOR

SIMULTANEOUS

INTFRPBETATION IF SIFLAG

IS T.)

))

ADJ

(WRD THAN (COMPARATIVE V (, VP/ADJ PHOCESSES THE

COMPLEMENTS OF PREDICATE

ADJCCTIVESp E.G. THE

INFINITIVE ON

"JOHN IS EASY TO PLEASE"

(TO VP/ADJ-COMP))

(PUSH COHPL/ (AND (COMPARATIVE V)

(WRD THAN))

(SETR CO_Pi *)

_TO S/VP))

(PUSH COMPL/ (AND (WBD (FOB TO THAT))

(EQUAL (GETR SUBJ)

(_UOTE (NP (PRO IT)

(tim SS)))))

(SETH SUBJ *)

(T_ S/VP))

(PUSH COHPL/ (KND (WRD FOR)

(RFEAT FORCOMP (CADR (GETR V))))

(SETR COMPL _)

(T_ S/VP))

(PUSH FOR/NP (AND (RFEAT TOCOMP (CADR (GETR V)))

(WRD TO))

(! (COND

((RFEAT SUBJLOW (CADR (GETR V)))

(SENDR SUBJ (GETR SUBJ)))

(T (SENDR SUBJ (QUOTE (NP (PRO SOMETHING)
(NU S_))))

(SENDR OBJ (GETR SUBJ)))))

(SETR COMPL *)

(TO S/VP))

(JUMP VP/VP T))

B.46

; <WEBBER>ANNGBAM.;23 MON 12-JUN-72 9:5_PM PAGE 1:45

(VP/ADJ-CCMP
(PUSH NP/ T

(SENDR V (GETR V))
(SENDR ANAPHORFLG(GETR ANAPHORFLG))
{SETR OBJ *

(* WE LOOK FOR AN NP FOLLOWING "THAN" IN A

COMPARATIVE COMPLEMENT, IF WE FIND ONE

(RATHER THAN A SENTENCE)# WE MAKE IT THE OBJECT OF

THE VERB. E,G, "FRED IS TALLER THAN JIM,"

IS ANALYZED AS "FRED [TALL COMPARATIVE] JIM,")

(TO VP/NP)))

(VP/AGT

(PUSH NP/ T

(SETR SUBJ ,)

* HER IF THE SENTENCE IS PASSIVE, WE HAVE NOT YET

FOUND _HE AGENT, BUT dE HAVE SEEN THE PREPOSITICN

PY, wHICH MIGHT INTRODUCE THE AGENT NP.

USALLY, TH% AGENT NP WOULD BE IDENTIFIED HERE 'BY' A

PUSH, BUT IN A QUESTION OR RELATIVE CLAUS_, THE

AGENT r'IGHT HAVE BEEN FRONTED, LEAVING TH_ 'BY'

DANGLING: 'WHO IS THE INFORMATION NEEDED BY' OR 'THE

MAN THE INFORMATION IS NEEDED B_...'.

IN THESE CASES, THE NP H_S BEEN HELD, AND ARC 2

PICKS IT UP. THE RESUME ACTION ALLOWS FOR AN

EXTRAPOSED RELATIVE CLAUSE On PP.)

(SETR AGFLAG NIL)

(T_ vp/Vp))

(VIR }_P T

(RESUME)

(SETR SUBJ ,)

(SETR AGFLAG NIL)

(T/ VP/VP)))

B.47

; <WEBBER>ANNGRAM.;23 MON!2-JUN-72 9:5_PI_ PAGE 1:46

(VP/COMP-ADJ
(CAT ADJ T

(SETR V (BUILDQ (_ (ADJ) (*)

(COND
((WRD MOREMORE-MOST)

(QUOTE (COMPARATIVE)))
(T (_UOTE (SUPERLATIVE))))

(COND
((WRD (APPEAR SEEM)

v)

(QUOTE (SEEMING)))))

(, MAKES AN UNDETERMINED COMPARATIVE OR SUPERLATIVE

ADJECTIVE IN PPEDICATE ADJECTIVE POSITION THE DS

V_RB. IF THE COPULA WAS "APPEAR" OH "SEEM", THE

FFATURE "SEEMING" IS ADDED TO THE NEW VERB.

E.G. "FRED IS MOST INTERESTED IN 5NAK_5" THE DS VERB

IS (ADJ INTERESTED SUPERLATIVE))

)

(T[' VP/ADJ)))

(VP/BEAD

(CAT PREP (SETQ TEMP (VPARTICLE V

(, HER_ WHEN WE HAVE MADE FIRM DECISION5 ABOUT TH_

MAIN VERB AND THE SUBECT. WE LOOK FOR _OST-VERBAL

MODIFIERS (OBJECTS, SENTENTIAL COMPLEMENTS,

PARTICLES, PREDICATE ADJECTIVES), MAN_ OF WHICH A_E

SPECIFIED BY ROOT FEATURES ON THE VERB.)

))

(, THIS ARC IDENTIFIES A PARTICLE IMmeDIATELY

FOLLOWING THE VERB ('LOOK UP', 'LOOK _0_'). THE

FUNCTION VPARTICLE EXAMINES THE PSOPE_T_ 'PARTICLES'

IN THE VERB'S DICTIONARY ENTRY, W_ICH INDICATES WHAT

PAPTICLES ARE ALLOWED, AND WHAT THE N_W ROOT VERB

CORRE5PONDING TO THE VERB+PARTICL_ COMBINATION IS.

THUS, 'LO_K UP' M±GnT CAUSE T_ nal_ VER_ Tu _E

CHANGED TO 'LOOK-UP', WHICH MIGHT HAV_ DIFFERENT

ROOT-FEATURES THAN 'LOOKS.)

B.48

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:5_M PAGE I:_7

(SETR V TEMP)

(SETR HEAD TEMP)

(TO VP/V))

n _ AND D _E

STRING)

(SENDRQ V B_)

(SENDRQ A_4APHORFLG (GETR ANAPHORFLG)

)

(SETR OBJ _)

(TO VP/NP))

(JUMP VP/NP (OR (RFEAT INTRANS V)

(AND (VTBANS V)

(GETR OBJ)))

(_ WE MAKE THE NP

FOLLOWING B_ ITS OBJECT

RIGHT OFF.)

(_ IF THE MAIN VERB IS MARKED INTRANSITIVE, THERE I5

NO PREDICATE COMPLEMENT DIRECTLY TIED TO THE

V_RB--WE SKIP TO VP/NP.)

(PUSH S/Q (AND (VTRANS V)

(WRD (WHICH WHO WHAT WHOSE)))

(. CERTAIN VERBS CAN TAKE INDIRECT _UESTIONS AS

THEIR OBJECTS (E.G. 'KNOW'). THESE ARE MARKED A5

ORDINARY TRANSITIVES IN THE DICTIONARY, SO IN ORDER

TO HECOGNIZE THESE CONSTRUCTIONS, WE ALLOW THE

POSSIBILITY THAT ALL TRANSITIVE VERBS CAN TAKE THESE

OBJECTS. ('I K_:OW WHO WANTED THE INFOHMATION.'))

(SENDRQ TYPE IDQ)

(SETR OBJ (BUILDQ (NP .)))

(TO Vp/NP))

(VIR NP (VTRANS V)

(. FOR RELATIVE CLAUSES, PASSIVES, AND

WHO-BE-QUESTIONS, ThE DIRECT OBJECT HAS BEEN HELD;

WE PICK UP HERE, LOOKING FOR POSSIBLE EXTRAPOSED

R_LATIVES.)

B.49

; <WEBB£R>RNNGRAM.;23 MON 12-JUN-72 9:5_PM PAGE I:_8

(RESUMEV)
(SETR OBJ *)

(Tt VP/NP))

(PUSH Np/ (AnD (v_RANS V)
(NOT (WRD BE V)))

(. HERE WE PICK UP THE REGULAR OBJECT OF TRANSITIVE

VERBS. NOTS THAT FOR A WHQ-QUESTION W&TH 'BE' AS THE

MAIN VERB ('WHO IS THE LEADER?'), TiE SUBJECT

('THE LEADER') WAS PICKED UP AT STATE S=NO-SUBJp AT

WHICH POINT THE WHQ WAS HELD.

THUS WE DON'T LOOK FOR THE OBJECT ON THIS ARC, BUT

RATHER ON THE SUBSEQUENT VIR ARC.)

(SENDR V (GETR V))

(SENDR ANAPHORFLG (GETR ANAPHORFLG))

(SETR OBJ .)

(T[VP/NPI)

(WBD [I?R3 (AND (_FEAT COPULA V

(GETP (NEXTWRD)

(T_ VP/MORE))

(PUSH COM_L/ (AND (WRD THAT)

(RFEAT T_ATCOMP V))

(* WE RECCGNIZE TWO WORD

INFLECTED ADJECTIVES IN

?REDICATE ADJKCTIV_

POSITION))

'* VERBS _ARKED 'THATCOMP' CAN TAKE A THAT-CLAUSE AS

A COMPLEMENT ('I BELIEVE THAT THEY...').)

(SETR COMPL *)

(TC VP/NP))

(PUSH COMPL/ (AND (WRD (FOR TO))
(RFEAT FORCOMP V))

(* 'FORCOMP' VERBS TAKE A FOR- OR TO-COMPLEMENT: 'WE

HOPE FO_ JOHN TO CO_E', 'WE WANT iO COME'.

FOR A TO-COMPLEMENT, THE SUBJECT OF THE COMPLEMENT

IS THE SAM_ AS THE SUBJECt OF THE SENTENCE.)

B.50

; <WEBBER>ANNGR_M.;23 _ON _2-JUN-72 9:5_PM PAGE 1:49

(! (COND
((WRD TO)

(SENDR SUBJ (GETR SUBJ)))))
(SETR COMPLw)
(T_ VP/VP))

(PUSH COMPL/NTYPE (SCOMP V)

(* FINALLY, CERTAIN VERBS ALLOW T_E 'THAT' PRECEDING

A COMPLEMENT TO BE DELETED.

THE PUSH HERE ALLOWS FOB THIS.)

(SENDRQ NTYPE THAT)

(SETR COMPL .)

(TO VP/NP)))

(VP/MORE

(CAT ADJ T

(SETR V (BUILDQ (e (ADd)

(COnPARATIVE)

_)

(COND

((WRD (APPEAR SEEM)

v)

(QHOTE (SEEMING))))

(')

(_ A TWO WORD COMPARATIVE ADJECTIVE RE_LACE$ A

COPULA AS DS VERB. IF THE COPULA WERE "APPEAR" OR

"SEEM", THE NEW VERS GETS THE FEATURE "SE_MING".)

(T VP/ADJ)))

))

B.51

; <WEBBER>ANNGR_M.;23 MON 12-JUN-72 9:5_£M PAGE 1:50

(VP/NP
(PUSH COMPL/ (OR (AND (WRD (FOR THAT))

(EQUAL (GETR SUBJ)
(QUOTE (NP (PRO IT)))

(* THE FIRST OBJECT OR
COMPLEMENTCAN SOMETIMES
BE FOLLOWEDBY OTHERS,)

))

(AND (WRD THAT)

(GETR AGFLAG)))

(CCND

((GETR AGFLAG)

(SETBO AGFLAG NIL)))

(SETR SUBJ ,)

(T_ VP/VP

(, IF THE SUBJECT WAS 'IT', THE SUBJECT COMPLEMENT

OF THE VERB MIGHT HAVE BEEN EXTRAPOSED TO THIS

POSITION: 'IT IS CLEAR THAT ...I OR 'iT IS EASY FOR

JOHN TO ...' THIS ARC MOVES THESE COMFLEMENTS BACK

TO SUBJECT POSITION, WHERE THEY BELONG.

ALSO, A THAT-COMPLEMENT SUBJECT COULD HkVV BEEN

MOVED TO THIS POSITION BY PASSIVIZATION: 'I WAS

SURPRISED THAT...' FROM 'THAT ...

SURPRISED EE'. THE OBJECT 'I-ME' IS PICKED UP ON THE

VI_ NP ARC FROM STATE VP/HEAD;

THE AGZ[_T CLAUSE IS PICKED UP HERS.)

))
(PUSH FOR/NP (A_D (RF_AT TOCOhP V)

(_ETR OBO))

(* A TO-COMPLEEENT CAN OCCUR AFTE_ THE OBJECT: 'I

PROMISE[JOHN TO GO' OR 'i _ANTSD dOi_ TO GO'.

FOR N;OST VP:RBS. THE SUBJECT OF THE CO_=LEMENT IS THL

OBJECT ('J_)HN') OF THE MAI_: SENTENCE, _UT VERBS

_ARKED ISUBJLOW' HAVE THE SUBJECT 02 THE MAIN

,,_-_NTENCE PASSED DOWN (E.G. 'PROMISE'). _OR

'TRA_SCOMP' VERBS, THE OBJECT PASSED DOWN TO BE

SUBJECT REMAINS AS THE TOP-LEVEL OBJECT

('PERS[!ADE'), BUT THIS IS NOT ALWAYS TRUE

('EXPECT'))

B.52

; <WEBBER>ANNGRAM.;23 MON _2-JUN-72 9:bgPM PAGE 1:51

(SENDR SUBJ (COND
((RFEAT SUBJLOWV)

(GETR SUBJ))
(T (GETR OBJ))))

(COND
((NOT (RFEAT TRANSCOMPV))

(SETR OBJ NIL)))
(SETR COMPL,)
(T_ VP/VP))

(CAT PREP (SETQ TEMP (VPARTICLE V))

(SETR V TEMP)

(SETR HEAD TEMP)

(T<_ VP/VP))

(CAT ADV T

(ADDL VMODS (BUILDQ (ADV '7

))

(T_ vp/Np))

(PUSH NP/ (AND (RFEAT INDOSJ V)

(GETR OBJ))

(" A PARTICLE CAN OCCUR

AFTER THE OBJECT: 'LOOK

THE INFORMATION UP')

(" AN ADVERB MAY FOLLOW

T_E INDIRECT OBJECT)

(_ A NP CAN OCCUR IN THIS POSITION iF THE VERB CAN

TAKE AN INDIRECT OBJECT, WHAT WE THOUGHT WAS THE

OBJECT WAS REALLY THE INDIRECT OBJECT, AND THE NP

HERE IS TO BE THE DIRECT OBJECT.

('I GAVE JOHN THE INFORMATION' --> 'I GAVZ THE

INFORMATION TO JOHN'))

ADDL VMODS (BUILDQ (PP (PREP TO)

+)
OBJ))

SETR OBJ ,)

Tc vp/vp))

(PUSH COMPL/ (AND (WRD (FOR THAT))

(RFEAT INDOBJ V))

(, THE DIRECT OBJECT CAN ALSO BE A COMPLEMENT, FOR

C_RTAIN VERBS THAT ALLOW INDIRECT OBJECTS: 'I TCLD

MARY TMAT..°')

(ADDL VMODS (BUILDQ (PP (PREP TO)

(SETR O_J NIL)

(SETR CO_PL ,)

(T_ VP/VP))

(JUMP VP/VP T

÷)

oBJ))

(' FINALLY, JUMP TO

VP/VP)))

B.53

; <WEBBER>ANNGRAM.;23 MON 12-JUN-72 9:5_PM PAGE 1:52

(VP/V
(CAT V T

(, THE FIRST VERB CAN BE FOLLOWEDBY OTHERVERBS TO

FILL OUT THE PERFECT-PROGRESSIVE-PASSiVE AUXILIAR_

STRUCTURE. ADVERBS AND THE SUBJECT OF

THERE-I_SERTED SENTENCE CAN BE INIERSPERS_D BETWEEN

THE VERBS--WE LOOP FOR THEM HERE.)

(, VERBS AFTER THE _AIN VERB MUST BE PARTICIPLES OR

UNTENSED FORMS. IF A PAST PARTICIPLE, THE PREVIOUS

VERB IN THE SEQENCE MUST BE EITHER 'HAVE'

(ASPECT=P_RFECT) OR 'BE' (SENTENCE IS _ASSIVE, IF

POSSIBLE). A PRESENT PARTICIPLE MUST _E PRECEDED BY

'BE' (ASPECT=PROGRESSIVE). OTHERWISE, THE CURRENT

WORD MUST BE AN UNTENSED VERB AND THE REGISTER V

MUST BE EMPTY (BECAUSE THE FIRST VERB WAS A MODAL).

IF ANY OF THESE CONDITIONS IS SATISFIED, WE REPLACE

THE VERB BY THE ROOT FORM OF THE CURRENT WORD.)

(C_'ND

((GETF PASTPART)

(COND

((A_D (WRD BE V)

(VPASSIVE "))

(HOLD (GETR SUBJ)

(GETR NPFEATURES))

(SETH SUBJ (BUILDO (NP (PRO SOMETHING))))

(SETH AGFLAG T))

((AND (NULLR ASPECT)

(WRD HAVE V))

(SETRQ ASPECT (PERFECT)))

(T (ABORT))_)

((GETF P_ESPART)

(COND

((WRD BE V)

(ADDR ASPECT (QUOTE PROGRESSIVE)))

((_RD POSS-I_G T_PE))

(T (ABORT))))

((OR (NOT (GETF UNTENSED))

(G_TR V))

(ABORT)))

(SETH V ,_

(TC vp/V))

B.54

; <WEBBF_>A_NGRAM.;23 MON 12-JUN-72 9:b_PM PAGE 1:53

(CAT ADJ (RFEAT COPUL_ V)

SETR V (BUILDQ (e (ADJ) (J)

#)

(COND

((GETF COMPARATIVE)

(QUOTE (COMPARATIVE)))

((GE_F SUPERLATIVE)

(OUOTE (SUPERLATIVE))))

(COND

((_RD (APPEAR SEEM)

v)
(QUOTE (SEEMING))))))

(J A PREDICATE ADJECTIVE (SIMPLE OR INFLECTED)

REPLACES A COPULA A5 DS VERB.

IF THE COPULA WAS "APPEAR" OR "SEEM", THE FEATUHE

"SFEMING" IS ADDED TO THE NEW VERS.)

T4 VP/ADJ))

(HEM {MORE MOST)

AND (RFEAT COPULA V)

(G£TP (t_EXTW_D)

(_UOTE ADJ)))

(SETR MORE-_OST ,)

(T VP/CO_P-ADJ))

(PUSH NP/ (AND (GETR THERE)

(NULLR SUBJ)

(WRD (BE EXISI)

V))

C"t_D

(_CT (_Cii_CK • (GETR PNCODE)))

(A_OHT)))

SETP SUBJ *)

I VPlV_I

(JUMP VP/i_AD (G_IR 5UBJ)

(* HERE WE PUSH FOR THE

SUBJECT OF A

THERE-INSERTED

SENTENCE.)

:_ IF WF HAVE THE SUBJECT, WE CAN ASSUME THAT WE

ALSO H_VF THE MAIN VERB (USUALLY, THIS WILL BE TRUE

BLCAUSE WE WOULD HAVE LOOPED THROUGH THE FIRST ARC

AS LONG AS POSSIBLE) AND JUMP TO VP/HEAO TO LOOK FOR

POST-VEER CO_;STITUENTS. IF THE V REGISTER IS EMPIY

(i}{E FIFST AND ONLY VERB WAS A MODAL), WE ABORT

UNLESS THE MODAL _AS 'DO'--WE ALLOW 'DO' TO BECOME

THE MAIN VERB.)

B.55

; <WEBBER>AN_GRAM.;23 MON 12-jUN-72 9:5_PM PAGE 1:5_

(C_:ND

((NULLR V)

(COND

((_RD DO MODAL)

(SETRQ V DO1

(SETR MODAL NIL))

(T (ABORT))))

(T (COND

((AND (GETR THERE)

(WRD HE V))

(SETRQ V EXIST)))))

(SETR HEAD (GETR V)))

(CAT ADV T

(ADDL VMODS (BUILDQ (ADV ,)))

(T_ vp/v)))

(VP/VP

(WRD _Y (GETR AGFLAG)

(* THE ELEMENTS OF THE VERB PHRAS_ WHICH ARE CLOSELY

TIED TO THE MAIN VERB (E.Go COMPLEMENTS) HAVE BEEN

PROCESSED. VKRIOUS ADDITIO£4AL MODIFIERS ARE STILL

PERMITTED (ADVERBS, PREP-PHRASES). ALSO, WE LOOK FOR

TH_ AGENT OF PASSIVE SENTENCES AND THE OBJECT OB

SUBJECT OF POSS-ING COMPLEMENTS, IF THESE HAVE NOT

BEEN ALPEADY IDENTIFIED.)

(* AGFLAG IS SET IF WE HAVEN'T FOUND THE SUBJECT OF

A PASSIVE SENTENCE. 'BY _ CAN INTRODUCE £T.)

(TO VP/AGT))

(WRD BY (AND (WRD POSS-ING TYPE)

(NULLR OBJ)

(NULLR SUBFLA_))

(- IN h POSS-ING COMPLEMENT WHERE THE SUBJECT WAS

SENT DOWN FROM tHE POSSESSIVE AT STATE NP/DET, THE

SENT SUBJECT MIGHT REALLY BE THE OBJECT IF NO OBJECT

WAS FOUND ('THE DUCK'S SHOOTING BY THE HUNTERS ...')

AND THE PEAL SUBJECT CAN FOLLOW A 'BY' _N THIS

POSITION.)

B.56

; <WEBBER>At_IGRA_.;23 MON !2-JUN-72 9:b_PM _AGE 1:55

(SETR OBJ (GETR SUBJ))

(ME_ (OF _Y)

(GETR SUBFLAG)

(* IN A POSS-ING COMPLEMENT, IF T_E SUB_ECT WAS NOT

SENT DOWN FROM THE POSSESSIVE, IT CAN APPEAR

FOLLOWING EITHER 'OF' OR 'B_' : _THE SHOOTING OF THE

HUNTERS ...v OR 'THE SHOOTING BY THE HUNTERS')

(SETR SUBFL_G NIL)

(TO ING/BY))

(CAT ADV T

(ADDL VMODS (BUILDQ (ADV J)))

(_0 VP/VP))

(PUSH PP/ (CAT PBFP)

(ADDL VZODS *)

(TO VP/VP))

(JUMP S/VP T))

STOP

B.57

Appendix C

Semantic Rules

C.I

; <WEBB_R>RULES.WBITEUP;7 SUN 11-JUN-72 12:29PM PA_E I

(PROGN (LISPXPRINI (QUOTE "FILE CREATED ")

T)

(LISPXPRINI (QUOTE "11-JUN-72 12:29:_8")

T)
(LISPXTERPRI T))

(LISPXPRINT (QUOTE RUL_SCOMZ)

T)

(RPAQQ RULESCOMS ((V: GENRULES)

(R: TRUL_S)

(V: NEWRULES)

(V: TRFKF_AGS)

(V: RUL_LISTS)))

(LISPXPRINT (QUOTE (V: GENRULES)) T)

(BPAQQ GENRULES (ADJ:MASS ADJ:SET ANY:TERM D:ALL D:ALL-PL D:ALL\ONE5

D:ANAPHORA D:ATLEAST D:ATMOST D:AVERAGE D:CARDINAL D:EACH D:EVERY

D:EXACTLY D:HOWMANY D:LESSTHAN D:MANS D:MAX_MUM D:MINIMUM D:MORETHAN

D:NEG D:NIL D:NO D:NOT-S_T D:NUM}_ER D:OLDEST D:ORDINAL D:ZE_*I-ANAPHOR

D:SETI D:SETOF D:SOM_ D:SSET D:THE-PL D:THE-S_ D:THE-SG2 D:WHQ-pL

D:WHO-SG D:WHR NP:NPR PRI PR2 PR3 PRH PR5 PR6 R:ADJ R:PP R:_REL R:REL

S:BE-AROUND S:BE-FOUAL S:BE-GREATER-VAL S:BE-LESS=VAL S:BE-MEMBER

S:BE-MEMBER- S:DCL S:IMP 5:NEG 5:NPQ S:NPU S:QREL S:QREL-NEG 5:WHQ
S:YES/NO SS3@ SS32 SS33 SS3_ 5S35 SS36 SS_I))

(DEFINEV

(ADJ:MASS ((T T)

->

(PROG_

(_ THE INTFRPR?TATION PRODUCED FOE A NASS NOUN

MOr)IFYING ANOTHFR NOUN (E,G. "THE S±LICA PHASE") iS

(14PR, X / (QUOT_I ---)), WHERE THE STANDARD FORM OF

THZ M_SS NOUN IS INSERTED IN THE SPACE.

THE FUHCTIOI_ _Ip_ FINDS THE SPANDARD FOR_)

(SETQ 5EM (ZUHST (QUOTE (NPR_ X / W))

(QUOTE DLT)

QUANT))

(SETQQ QUANT DLT)

(SETQ SEM

(SUBST (LIST (QUOTE QUOTE)

(EVAL (CONS (QUOTE NPR)

(QUOTE (# Z TE_M)))))

(UUo_ w)

SEM)))))
(ADJ:SET (!ADJ.NP (P[E;_ I SET))

->

P_OGI (SEIQ SEM

(SUBLIS (QUOI_ ((FOR . UNION)

(DLT (# 1 1NRULES))))

QUA_2))

(SE£QO OUANT DLT

C.2

; <WEBBER>RULES.WRITEUP;7 SUN 11-JUN-72 12:29_M PA_E 1:1

(* ADJ:SET MATCHES A NOUN-NOUN MODIFIER WHEN IT

R2FERS TO A SET, E.6. "FARE-EARTH ANALYSES".

RARE-EARTH REFERS TO THE SET OF ELEMENTS WITH ATOMIC

NUMBERS 58 THROUGH /I._! THE INTERPRETATION PRODUCED

IS SIMILAP TO THAI FOR "ANALYSES OF RARE-EARTHS":

(FOR EV_PY X6 / (SZQ RARE-EARTHS): T ;

biT).)

))))

(ANY:TERh ((T T)

->

(LIST IOUOTE OUOTE)

(EVIL (CONS (QUOTE NPR)

(QUOTE I_ _ TE_M))

(* ANY:T_,PM IS USED TO INTZRPRET VERBS, ADV_RHS,

!NTE6E_S, PROPER NOUNS AND ADJECTIVES.

TH_ INTFPPBErATION IS (QUOIE ---), WHERE Thg SPACES

AR_ FILLED 8Y THE STANDAPD FORM OF THE _ORD,

CO;_P!ITZD BY NPR.)

)))))

(D:ALL ((NP.DET r)
->

(_IIAN! (FOF ZVERY X / (_ _ N_ULES)

C# _ RRULES)

; DLT))))

(D:ALL-PL ((NP.DfT (AND (EQO i ALL)

(_OU 2 PL)))

->

(_ROG_: (DSUBSf (QUOT_ EVERY)

QUART)

(QUART (FO_ _V_RY X / (g _ NRULES)

_ _ R_ULES)

; DLT)))))

(D:ALL\ONES (NP.D_:T (_QU ALL))

NP.PRO (f;QTY O_ES))

NP.PP (SOU I OF))

->

(QUOT! (# 3 2 ALL)

(* D:ALL\ONE$ INVOKES THE _ULE D:ALL ON THE NODE'S

DZPEND_NT PREPOSITIONAL PHRASE VIA THE TYPEFLAG "ALL".

F.G. 0!; THE PP OF "ALL OF THE T_PE/A SAMPLES". IHE

INTERPRETATION IS SUCH THAT THE QUANTIFIER COMES

FORM "_ii" AND THE CLASS A_D RESTRICTIONS FROM THE

DZPEN!)FUT NP.)

C.3

; <WEBBEE>RULES.WRITEUP;7 SUN 11-JUN-72 12:29_i PAGE 1:2

)))

(D:ANAPHORA ((OR (NP.P_O (NOT (OR (EQU I &)

(EOU I YOU)

(EOU I ONES))))

(NP.DET (OR (EQU I THIS)

(EgU I THAT)

(EQU I THESE)

(EOU I THOSE))))

(NOT (NP,PP T))

(NOT (NP,REL T))
->

(PROG_ (SETQ QVA_ (ANTECEDANT (QUOTE (# _ IDENTITY)))

(* D:A_IAPHORA MATCHES ANAPHORIC NP'Z NOT MODIFIED BY

PREPOSITIONAL PHRASES OR RELATIVE CLAUSES, E.G. "IT"

"THOSE BAHIUM ANALYSES", THE INTERPRETATION DEPENDS

ON THE ANTFCEDANT. SEZ THE FUNCTION DESCRIPTIONS OF

' EQUANT AND SCOPEVAHS FOR FURTHERANTECED,q, ANT

EXPLANITION,)

)

(MAPC (SCOPEVARS QVAR)

(FUNCTION ANTEQUANT))

(ANTEQUANT QVAR))))

(D:ATLEAST ((NP.DFT.COMP (OR (EQU I ATLEAST)

(EQU I ASMANYAS)))

->

(QUANT (FOR (EQ N (# I 2))

X / (_ _ NRULES)

(# _ RRULES)

; DLT))))

(D:ATMOST ((NP.DET.COMP (EQU i ATMOST))

->

(OUA_T (I_OT (FOR (_REATER N (# I 2))

X / (# _ NRUL_S)

(_ :_ RRULES)

; DLT)))))

(D:AVEFAGE ((T T)

->

(QUOTE (SEQL (AVERAGE X / (# _ NRULES)

(# _ RRULES))))))

(D:CARDINAL ((NP.DET.I_?TEG_R f)
->

(QUANT (FOR (EQ N (# I I INTEGER))

X / (# _ NRUL_S)

(# _ RRULES)

; DL2))))

C.4

; <WEBBER>RULES.WRIIEUP;7 SUN 11-JU,_,'_72 12:29 11 PAGE 1:3

(D:EACH ((NP.DET (AND (EOU EACH)

(EoU 2 SG)))
->

(QUANT (F05 EVER_ X / (# Z I_RULES)

(_ _ RRULES)

; DLT))))

(D:EVEHY ((NP.DET (AND (EQU I EVERY)

_QU 2 ss)))
->

(QUANT (FOR EVERY X / (# 0 NRULSS)

(# _)_ RRULES)

; DLT))))

(D:EXACTLY ((NP.DET.COMP (EQU 1 EXACTLY))
->

(QUANT (FOR (EQ N (# 1 2))

X / (_ @ NBULES)

(# _ 2RULE5)

; DLT))))

(D:HOWMANY ((NP.DFT (AND (EQU I HOWMANY)

(OR (EQU 2 PL)

(EQU 2 SG/PL))))
->

(QUART (FOR THE X / (# Z NUhBER)

: T ; (PRINTOUT X)))))

(D:L_SSTHAN ((NP.DET.COMP (OR (EOU 1 FEWERTHAN)

(EOU 1 LESSTHAN)))
->

(QUAI;T (NOT (FOR (_0 N (_ I 2))

X / (# _ NRULES)

(_ _ RRULES)

; DLT)))))

(D:MASS { (YP.N (OR (MEM ! (MASS)

$* D:MASS I_ATCHES A MASS NOUN AND PRODUCES AS ITS

INTERPRFT_iION, A VARIABLE ASSOCIATED _ITH THE

SS_NDARD FORM OF THE NOJN. _.G. "ALUMINUM" IS

I_!TERPRETED AS (NPR. X / (QUOTE AL203)))

)

(EQ (GETP (CAR (TERM (CONSTITUENTS (# I))))

(OUOTE _,))

(OUOT_ _ASS))))
->

(PRC)GN (SETO S_ (SUBS? (QUOTE (NPa" X / W))

(QUOTE DLT)

QUA_))
(SETQQ QUANr DLT)

(SETO SE_ (SU_Sr (LI5_ (QUOTE QUOTE)

(TABFORM (# 0 HEAD)))

(QUOTE w)

SEM)))))

C.5

; <WEBBER>RULES.WRITEUP;7 SUN 11-JUN-72 12:29P_ PAGE I:_

(D:MAXIMUM ((T T)

->

(QUOTE (SEQL (MAXIMUM X / (# _ NRULES)

(# Z RRCL_S))))))
(D:MINIMUM ((T T)

->

(QUOT_ (SEOL (MINIMUM X / (# _ _RULES)

(# Z RRULES))))))

(D:MORETHAN ((NP,DET.COMP (EQU I MORETHAN))
->

(QUANT (FOR (GREATEB N (# I 2))

X / (# _ NRULES)

(# 0 RRULES)

; DLI))))

(D:NEG ((NP.NEG T)
->

(QUANT (_IOT (# 1 I)))))

(D:NIL ((NP.DET (EQU I NIL))
.>

(QUANT (FOR GEN X / (# _ NRULES)

(# _ RRUL_S)

; DLT))))

(D:NO ((NP.DET (EQU I NO])

->

(QUANT (NOT (FOR SOME X / (# _ NRULES)

C# _: RRUL_S)

; DLT)))))

(D:NOT-S_T ((T T)

->

(_UO_=

(* D:_OT-SET IS A D_FAULT _ULE USSL IF AN NP NODE

CANNOT BE INTERPRETED AS R£FERRING TO A 5FT.

AS A RESULT, THE NORMAL DRULES FOH THAT NODE ARE

MATCHED,)

I))

(D:NUMB_R ((T T)

->

(_SU_IONF (SE<_L (NUMBER X / (# _ NRULES)

(_ _ RRU_ES))))))

C.6

; <WEBBEP>RULES,_RIIEUP;7 SUN 11-JUN-72 12:29 i_ PAGE 1:5

(D:OLDEST ((T T)

->

(OUOTE (SEQL (OLDEST X / (# _ NRULES)

(_ _ _RULES))))))
(D:ORDINAL ((NP.DET._RT (EQU I THE))

(NP,OET.POST_RT (NU_BERP (EVAL (CADAD_ (# I TER_)))))
->

(QUANT (FOR (ORDINAL (# 2 I T_RI_))

X / (# _ NRULES)

(# _ RRULZS)
; DLT)

(, D:O_DI[_AL MATCHES DETERMINERS WHICH ARE ORDINAt

N[iMBERS, E.G.

"THE THIRD POTAZSIU_ ANALYSIS FOR SAMPLE I_3" iHE

INTERP_[TATION IS (FOR (ORDINAL 3) X /

(D;_TALINE (_HQFILE ZI$_3) $I_0Z30VEHALL K20) : I ;
DLT))

)))

(D:SZMI-RNAPHOR ((NP.PRO (NOT (OR (EQU I _)

(E_U I YOU)

(EOU I ON_S))))

(N_.PP T)

-->

(FROG! (SEiSIANAPHOR (QUOTE (# Z IDENTITY))

(, D:SF_I-ANAPHCR _ATCHES ON TYPE OF PARTIAL

AtAPHO_A, PRONOUNS MODIFIED BY PR_POSITiONAL

_HPASES. E.G. "GIVE ME THOSE FOR $I_3" THE

INTERP_ZATION DEPENDS ON THE ANTECEDA_T,

27F TH[FUNCTION DESCRIPTION OF SEM£A_APHOR FOR

FUR.H_[; n' TAIL.)

))))
(D:SETI ((NP._ (<FM ; SET))

(NP.DET (OR (E_U THE)

->

(PRCG_ (Silo SE _ (SUSLIS (QUOTE ((_OR . UNION)

(_LT 5ETLIST X /

(# _ _RULES)

(# _ RRULES)

; T)))
OU_NT)

C.7

; <WEBBE2>RHLFS.WRITEUP;7 SUN 11-JUN-72 12:29_H PAGE 1:6

(* D:SETI MATCHES AN NP INTERPRETABLE AS A SET, E.G.

"T_E TYPE/B ROCKS WHICH CONTAIN SILICA" THE

INTERP_FTION IS THE LIST OF OBJECTS IN THECLASS

M_FTING THE $IVEN RES%RICTIONS E.G.

[S_TLIST X / (SEQ T_PEBS) :

(CONTATN X SILICA); T))

)

(SETQQ QUANT DLI))))

(D:SETOF ((NP.DET (AND (OR (EQU I THE)

(EQU I ALL)

(EQU I NIL))

(EQU 2 PL)))

->

(PROGI (SETQ S_M (SUBLIS (QUOTE ((FOR . UNION)

(DLT SETOF X / (_ _ NRULES)

(# Z RRULES)

; T)))

QUANT)

(* D:SETOF INVOKES THE INTERPRETATION OF THE NODE AS

A RESTRICTED SFT, PRODUCING A SINGLE 3UUCFSSOR

FUNCTION FOR TH£ CLASZ OF THE NODE AND iTS

RZSTRICTIONS. F.G., IT WOULD PRODUCE FOR

"THE BRECCIAS WHICH CONTAI_ KRYPTON" THE

INTERPRFYATIO_ (SETOF X / (SEQ TYPECS) :

(CONTAIn! X (QUCYE _)); T))

)

(SETQQ OUANT DLT))))

(D:SOME !(_P.DET (OR (EQU SO_E)

CE_U AN)

(EQI_ ANY)))

->

(QUANT (FOR SOH_ X / (= _ _£ULES)

{# _ RRULES)

; DLT))))

(D:SSET ((_:P.DET (OR (EQU EVERY)

(EQU 2 SG/PL)

(EUU 2 P_)))

->

(QUANT (SSU_ION X / (= _ NRULES)

(_ _i RRULES)

; DLT))))

C.8

; <WEBBEP>RULES.WRITEUP;7 SUN 11-JUN-72 12:_9_M PAGE 1:7

(D:THE-PL ((NP.DET (AND (EQU i THE)

(OR (EQU 2 PL)

(EQU 2 SG/PL))))

->

(QUANT (FOB EVERY X / (# _ NRULES)

(# _ REULES)

; DLT))))

(D:THE-SG ((NP.DET (AND CON (EQU I THE)

(EQU I THIS)

(EQU I THAT))

(EOU 2 SS)))
->

(QUAN_ (FOa THE (# _aULE)

(# 0 RRULES)

; DLT))))

(D:THE-SG2 ((NP.DET (AND (E_U ! THE)

(EQU 2 SG)))

(NP.N (HE_ I (NONSPECIFIC)))

->

(QUANT (FOR EVERY X / (_ _ NRULES)

(# _ RRULES)

; DLT)

(* D:THE-SG2 MARCHES DEFINITELY DETERMINED SINGULAR

NOUN PHRASES _HICH DO NOT HAVE SINGLE REFERENTS.

FOR EXAMPLE, "qHE AGE OF $I_0_7" DOES NOT HAVE A

SINGLE REFERENT, Bur RATHE_ SEVERAL, ONE FOR EACH

_}ZASURING TECHNIQUE EL_PLOYED.)

)))

(D:WHQ-PL ((NP.DET (AND (OR (EQU I WHICH)

(_QU I WHAT)

(_Ou I w_Q)

(EOU I wIIICHQ))

(SOU 2 PL)))

->

(PROG:: (LSUBS_ (QUOTE EVEBY)

IQUOTE GEN)

QUANT)

(OUANT (FO_ EVERY X / (# _ NRHL_S)

(_ 2 RRULES)

(PRINTOUT X))))))

C.9

; <WEBBER>RULES.WBITEUP;7 SUN 11-JUN-72 12:29P_ PAGE 1:8

(D:WHQ-SG ((NP.DET (AND (OR (EQU I WHQ)

(EQU I WHICHQ)

(EQU I WHICH)

(EQU I WHAT))

(EQU 2 SG)))
->

(OUANT (FOR THE X / (# @ NRULES)

(# _ RRULES)

(PRINTOUT X)))))

(D:WHR ((NP.DET (EQU I W_R))

->

(QUOTE (# _)

(, THE INTERPR_ATION OF THE RELATIVE NP IN A

RELATIVE CLAUSE IS THE VARIABLE ATTACHED TO IT IN

THE MATRIX SENTSNCE.)

)))

_NP:NPR ((NP.NPR T)
->

(PROGN (SETO SEM (SUBST (QUOTE (NPH* X / W))

(QUOTE DLT)

QUANT)

(, THE INTERPR!TION OF A PROPER NOUN kS A VARIABL5

ASSOCIATED WITH THE NOUN IN ITS STANDARD FORM.

E.G. "NASA" I5 INTERPRETED AS

(NPR, X / (QUOTE NASA)))

)

(SETQQ QUANT DLT)

(SETQ SEM

(SUBST (LIST (QUOTE QUOTE)

(EVAL (CONS (QUOTE NPR)

(QUOTE (_ 1 1TE_M)))))

(Quo:E w)

S_)))))

(PRI ((S._-NEG (NOT (LEAFMEMB P

(_UOTE (WHQ WHICHQ WH_N WHERE WHY HOW

HOWMANY)))))

--5"

(P_ED (TEST (# _ SRULES))

_))

(, PRI MATCHES YES-NO

QUESTIONS PHRASED IN THE

NEGATIVE)

C.lO

; <WEBBEE>RULES.WRITEUP;7 SUN 11-JUN-72 _2:29PM PAGE 1:9

(PR2 ((S.Q (NOT (LEAFMEMB P

(QUOTE (WHQ WHICHQ WHEN WHERE WhY HOW HOWMANY)

))))
(NOT (S.O-!_ODAL T))

->

(PRED (TEST (# @ SRULES)) (" PR2 MATCHES YES.NO

QUESTIONS. THE

INTERPRETATION IS

"TEHT THE VALIDITY OF THE PHOYOSITION EAP_Eo_D BX TH_ bE_I_NCE.")

(PR3 ((S,NEG T)

.>

(PRED (NOT (# _ SRULES))

(_ PR3 MATCHES REQUESTS VOICED IN THE NEGATIVE THAT

ARE NOT YES.NO QUESTIONS, E.G.

"WHICH SAMPLES DO NOT CONTAIN SILICA?")

)))

(PR4 ((oR ((s (DCL))

T)

((S (REL))

T)

((s (POSS-ING))

T))
->

(PRED (_ 0 SRULES)

(, PRY MATCHES DECLARATIVE SENTENCE5 AND RELATIVE

AND POSSESSIVE-PARTICIPLE CLAUSES E.G.

"SI_Z3'S CO_;T_ININ_ SILICA". THE INTERPRETATION IS

THE PROPOSITION EXPRESSED BY THE SENTENCE OR

CLAUSE.)

)))

(PR5 ((S.IMP T)
-->

(PRED (DO (# 3 SRULES))

)))

(PR6 ((S.NP T)

(S.Vp T)
->

(PRED (_ 8 SRULZS)

)))

(= PR5 MATCHES

IMPERRTIVE SENTENCES,)

(" PR6 MATCHES ALL

SENTENCES EXCEPT FOR

NOUN PHRASE UTTERANCES,)

C.ll

; <WEHBFR>RULES.WRiTEUP;7 SUN 11-JUN-72 12:29_ PAGE 1:10

(NP.N T5
->

(PROG (ANS)

(COND

((USED? (EETQ ANS (CDR (AZSOC I (CAR RVECTOR)))

(* R:ADJ _ATCH_S ALL ADJECTIVES I_ THE _EQUEST WHICH

HAVEN'T CONTRIBUTED TO ITS INTERPRETATION.

IT CAUSES A MES5AGE TO BE PRINTED OUT TO THE USER TO

THAT EFFECT, AND THAN ASKS HIM WHETHER IT IS SAFE TO

IGNOPE THOSE ADJECTIVES. THE USER I5 GIVEN THE

OPTIONS OF AGREEING, TERMINATING THK REQUEST, OB
BREAKING IN ORDER TO INVESTIGATE THE MATTER

FURTHER.)

5)

(PRINt (QUOTE "I DO NOT UNDERSTAND ")

T)
(PRINT ANS T)

(PRIN! (QUOf_ "AS A MODIFIER OF ")

Y)

(PRINT (CDR (ASSOC I (CAD_ RVgCTOR))))

(PRINt (QUOTE "DO YOU WANT _E TO IGNORE IT?"5

T)

(TERPRI T)

(COND

((ME_B (SETQ ANS (BEAD))

(QUOTE (YES T TRUE)))

(P_INT (QUOTE OK5

T))

((_ ANS (QUOTE BREAK))

(BFEAKI T T SEhSUB))

(T (OUIT)))

75)

C.12

; <WEBBER>RULES.WRITEUP;7 SU_ 11-JUN-72 12:29iM PAGE 1:11

(R:PP (AND (NP.PP (NOT (MEANING? (# 2)

->

(PROG (A_:S)

)))

(* R:PP ACTS LIKE AS

R:ADJ ON PREPOSITIONAL

_HRASES.)

(PRINI (QUOTE "I DO NOT UNDERSTAND ")

T)

(PRINT (CDR (ASSOC 3 (CAR RVECTOR)))

T)

(PRINt (QUOT_ "AS A _ODIFIER OF ")

T)

(PRINT (CDR (£SSOC U (CAH _VECTOR)))

T)

(PRINt (QUOT5 "DO YOU WANT HE TO IGNORE 1T?")

T)

(TERPRI T)

(CO_D

((HERB (SETQ ANS (BEAD))

(QUOTE (YES T TRUE)))

(PRINT (_UOTE OK)

f))

((EQ ANS (QUOTE BREAK))

(BRFAK T T SEMSUB))

(T (QUIT)))

T)1)
(R:QREL ((NP.QREL (AND (RELrAG (_ I)

(, R:_REL ACTS LIKE AS R:ADJ ON RELATIVE CLAUSES

DERIVING FROM THE SURFACE S_RUCTUHE VER_ PHRASES OF

WH-QUESTIONS.)

)

(OR (I_TERP (# I))

(P_oG (ANS]

(PRINt (QUOTE "I DO NOT UNDERSTAND ")

T)

(PRINT (_ I)

T)

(PRINt (QUOTE

"DO XOU WANT ME TO IGNORE IT?")

T)

(TEHPRI T)

(CO_D

((MEHB (SETQ ANS (BEAD))

(QUOT_ (Y[_S T TBU_)))

(PRINT (QUOTE OK)

T))

((EQ ANS (QUOT_ BREAK))

(BREAK) T T 5EMZUB))

(T (QUIT)))

))))
->

(OUOTE (_ _ I))))

C.13

; <WEBB_R>RULES.WEETEUP;7 SUN 11-0UN-72 12:29;M PAGE 1:12

(R:REL (A_D (NP.REL (AND (RELTAG (# 1)

)
(OR (ZNTERP (3 i))

(, B:BEL ACTS LIKE AS

R:ADJ ON RELATIVE

CLAUSES.)

(PROG (ANS)
(PRINt (QUOTE "I DO NOT UNDERSTAND

T)

(PRINT (# I)

T)

(PBINq (QUOTE

"DO YOU WANT ME TO IGNORE IT?")

T)

(TEBPB_ T)

(COND

((ME_B (SETQ ANL (READ))

(QUOTE (YES T T_UE)))

(PRINT (_UOT2 OK)

T))

(B_EAKI T T SEMSUB))

(T (UU_T)))

T))))

->

(PRED (_ 1 I))))

(S:BE-AROUND ((S.NP-V (AI_D (Z£M I (ANALYS£S COI_CENTRATION)
{_ S:AROUND MATCHES

REQUESTS LIKE WHICH

ALUMINUM ANALYSES ARE

ABOU}iD 7 PERCENT?)

)
(EUu 2 B_)))

(S.CO_P-N (AND (OR (EQU I ABOUND)
(EQU I APPROXIMATELY))

(M[_ 3 UNIT)))

->

(BUILDQ (AROUNDV_L (# 1 I)
#)

(LIST (_UOTE QUOTE)

(CONS (# 2 2 INTEGEN]
(_ 2 3 U_IT))I))I

(S:BE-E_UAL { (S.NP-V (AND (EQU 2 DE)
(NOT (OR (Z_U I WHO TMING SG)

(EQU 1 w_Q THING PL)

(£_U I WH9 _HING SG/PL)))))

(S.OBJ (AND (NOT (OR (EQU I WH_ THING SG)
(ECU I WHW THING PL)

{EOU 1 _H_ THING SG/PL)))

(EQU 2 SG_))

->

(_ED (TQUAL (# I I)
(= i _))

-)

C.14

; <WESBER>RULES.WRITEUP;7 SUN 11-JUN-7i 12:29_M PAGE 1:13

_* S:BE-EQUAL MATCHES QUESTIONS OF THE _ORM IS X Y?

, E.G. IS $IZ_72 THE OLDEST ROCK?)

)))

(S:BE-G_EATLR-VAL ((S._:P-V (AND (_EL_ I (ANALYSIS :ONC_NTRATION)

(* S:BE-GREATER-VAL

[_ATCHES REQUESTS LIKE

ARE ALL ALUMINUM

CO_CENTRATIONS GREATER

THAN 5 PERCgNT?)

)

(EQU 2 BE)))

(S.COMP-N (AND (OR (EQU I MORETHAN)

(EQU I GREATERTHAN))

(M_M 3 UNIT)))

->

(BUILDQ (GREATER (# I I)

(LIST (QUOTE QUOTE)

iCONS (_ 2 2 INTEGER)

(_ 2 3 UNIT))))))
(S:BE-LESS-VAL ((S.NP-V (AND (HEM I (ANALXS£S CONCENTRATION)

(* S:BE-LFSS-VAL _ATCHES RhQUESTS LIKE iS THE

AVERAGE CONCENTRATION OF ALUMINUM IN BRECCIAS LESS

THAN 9 PERCENT?)

(S:BE-ME[CBEH ((S.NP-V (A_D (E_U 2 BE

(_OT (OR

)

(EUu 2 BE)))

(S.COMP-N (AND (OR (E_U I LESSTHAN)

(ZQU I F_WERTHAN))

(!_EM 3 UNIT)))

.>

(BUILDQ (LESSVAL (_ I I)

CLIST (QUOTE QUOTE)

(CONS # 2 2 iNTEGER)

2 J UNIT))))))

EOU I WHQ TH_NG SG)

EOU fl WHQ THING PL)

EQU _ _HQ TH_NG SG/PL)))))

(S.OBJ (AND (NOT (OR (EQU I WHQ THING SG)

(EQU I WHQ THING PL)

(EQU I W_Q THING SG/PL)))

(oR (ME_ I SET)

(EQU 2 PL)

(EQU 2 SG/PL))))

->

(PRED (MEMBER (_ 1 I)

(_ 2 1 SET?))

C.15

; <WEB_ER>RI;LES.WRITEUP;7 SUN 11-JUN-72 12:29PM PAGE 1:1_

(, S:B_-MEMBEB MATCIIESQUESTIONSOF THE FORMIS X A
Y? AND ARE X'S Y'S? E.G. IS $18_Z3 A _BECCIA?)

)))

(S:BE-ME_[BER_ ((S.NP-V (EQU 2 BE))

(S,OBJ (_EM [TYPE))

->

(QUOTZ (_IEMBER" (# 1 I)

(# 2 I))

(- 5:BZ._IZZBEBJ MATCHES QUZSTIONS O_ THE FORM WHAT

KIteD OF X IS Y? AND IS Y A TYPE O_ X? E.G. WHAT KIND

OF ROCK IS $13;_i3?)

(S:DCL ((S.DCL-S T)

.>

(PRiD (# 1 I)

(_ S:DCL, S:lhP, S:N_G, S:WHQ, AND S:YES_NO MATCH S

_:ODES OF THE FORM (S (DCL (S ...))),

(S (IMP (S ...))), (S (NEG

(S ...)_ 5, AND (S (_ (S ..o))), OIHER 90SSIBLE DEeP

STR!]CTURES FOB SENTZNCES THAT ThE PARSER MIGHT BE

RZQUIRED TO PRODUCE.)

))5

(S:IMP ((S.i_IP-S T)

_)

(PF[_ (DO (= I 15))))

(S:NEG ((S.N_G-S T5

.>

(PRED (NOT (! . I)))))

(S:NPQ ((S.NPQ f)

_>

(PR=D (= I I REFS?) (_ S:NPQ MATCHES NOUN

_NRAHE QUESTIONS, E.G.

WHICH BARIUM ANALYSES?)

55_

(S:NPU <(S.NPU T)

_>

(PNIID (P_INTOUT (_ ! REFS?)))))

(S:QREL {((S (QREL))

T5
->

(OUOTE (_ ? SRULLS)

(* S:_RFL MATC_ES RSLATIVE CLAUSE5 DERIVING FRO_ THE

SURFAC STFUCTUP_ VERB PHRASES OF _H-QUEZTIONS.)

C.16

; <WEBBER>RULES.WRITEUP;7 SUi_ 11-JUN-72 12:2_I PAGE 1:15

(S:QREL-NEG (((S (ORAL N£G))

T)
->

(QUOTE (NOT (# ? SRULE5)) (* S:QREL-N_G DOES TH_

SAMF FOB WH-QUESTIONS

9_RASED IN THE

NEGATIVE.)

)))

(S:wHQ ((S.Q-s (LE_FNEM_ P (QUOTE (WH_ wHZCHQ WHEN W_E_E _H_ HOW

HOWMANY))))
->

(PRZD (_ 1 I))))

(S:YES/NO ((S.Q-S (NOT (LEAFMEMB P

(QUOTE (WH_ _HIC_Q WHEN _H_R_ WHy HOW

HO_A_y)))))
->

(PRED (T_ST (_ I)))))
(SS3_' ((S°NP-V I _U 2 BE))

(_Ou _ WH_ _HING _L)

(EOU _ WHQ THING SG/PL)

(_Ou J W_AT)))
->

(PRFD (PRINTOUT (1 . I))

(, SS_' MATCHES QULSTIONS OF THE FORM WhAT IS ._'- ao

AND WH '_ AR_ 9)

)))

(SS32 (S.NF-V (AND (ME_i _ INTEGER)

(_ou 2 sE)))

S.CO_P (AND (0_ EQU i AT /_AST)

_QU _ AS MA_4Y AS)

_QU ATLEASI)

EQU i ASMANYAS))

(3E4 2 INf_GER)))
->

c_ . _))))))
(SS3Y (S._,;P-V (At'D ([4Eh I INTEGEr)

(_ou 2 _)))

S.CO:'_P (A![D (OR {?OU i _ORE THAN)

(fQU HORET_AN))

(_EM 2 ItiTZGE_)))
->

(2 . 2)))))

C.17

; <WEBBER>RULES,WRITEUP;7 SUN 11-JUN-72 12:29_I PAGE 1:16

(SS3U ((S,NP-V (AND (MEM

(S.COMP (AND (EQU

(MEM
->

(P_FD (EQUAL (I .

(2 .

(SS35 I(S.NP-V (AND (HEM

(EOU

(S°COHP (AND (OR

(SS36

-7

PRED

(S._P-v

S.COMP

(hEM

I INTEGER)

2 BE)))

1 EXACTLY)

2 I_TEGEB)))

1)

2))))5

1 INTEGER)

2 BE)))

(EQU I FEWER _HAN)

(EQU i LESS THAN)

(EQU I FEWERTHAN)

_EQU I LESSTHAN))

2 INTEGEB)))

(6REAT_S (2 . 27
(1 .))5)5

(FOU 2 sS)))

(AND (OR (EQU ! AT HOST)

(ZQU I ATMOST))

(HEM 2 INTEGERS))

(GREhTER (1 . 1)
(2 . 2))))))

(EQU 2 BE)

(EQU 2 EXIST)))

->

(SS_! ((S._P-V (0_

->

(PFFD (EXIST (1 . 1))

(, SS&I r4AICHES REQUESTS OF THE FORM iS _HERE AN X?

A_;D A_E TH._RE Y'S?)

)))

5

(LISPXP_INT (_UO_E (R: TRUL£S)) T)

(RPAQQ TRULLS (TOPIC\ADJ IOPIC\ADJ-N TOPIC\ADU-N_ TOPICXADJ._P

TOPIC\AND-NP TOPICk_ND-S 70PIC_SP fOPIC_ TOPICXNOM TOPICXNR.S

TOPIC\NR.NP TOPIC_OT-[_P TOPIC\NOT-S _OPIC\NPB TOPICXOR-NP _OPICkOR-S

TOPICkPP TOPIC_EL TOPICXS.COMPL TOPIC\S._P TOP_CkS.OBJ TOPIC\S.Pp

TOPICkS.V TOPlC_ERM TOP!CXTERM2 TOPIC\AUTHOR TOI'_CXAUTHOB2

TOPIC\NP.COMPL TOPIC\PP.COMPL TOPICkV-INT_ANS TO_ICXV-TRANS

TOPIC\V-TEANS2 TOPICX_MPUASIS TOPICXADJ.SUP_R TO/ICkADJ.COHP))

(DEFINEG

[TOPICXADJ

AND

(N_.ADJ

->

(AND (NO1 (MEM DOCUMENT))

(NOT (EO (CAR (# 1))

(NOT (ME_ PADDING))))

(QUOT_ (_ I q TE_S_)]

C.18

; <WEBBER>RULES°WRITEUP;7 SUN 11-JUN-72 12:2_?M PA_E 1:17

[TOPIC\ADJ-N

OR

(NP.ADJ-N (NOT (AND (OR (MEM I DOCUMENT)

(MEM I PADDING))

(MEM 2 DOCUMENT))))

(OR (NP.PP T)

(NP.REL T)

(NP.COMPL T))

-> (ADJPHRSE (QUOTE (_ _ IDENTITY)))

[TOPICkADJ-NPR

OR

(NP.NPR T)

(NP.ADJ T)

(OR (NP.PP T)

(NP.REL T)

(NP.COMPL T))

-> (ADJPHRSE (QUOTE (_ _ IDENTITY)))

[TOPIC\ADJ.NP

AND

(NP.ADJ._:P T)

-> (QUOTE (# 1 ! TOPIC))

[TOPIC\A_D-NP

AND

(NP.AND T)

-> (QUOTE (# I I TOPIC))

[TOPICXA_D-S

A_D

(S.A_!D T)

-> (_UOT_ (_ I I TOPIC))

[TOPIC\ESP

(NP.ADVP (MEI_ i _RANSADV))

-> (,FLAG (OUOTF (= _ 2 TOPIC)))

[TOPIC\N

(14P.N (A_D (NOT (_EM ! PADDI_G))

(_OI (_E_ _ DOCUMENT))))
>

[TOPIC_OM

-> (QUOT_ (# I i TOPIC))

[TOPICXN_.S

(NP._Z.S _)

-> (QUOTE (_ 1 ! TOPIC))

C.19

; <WEBHER>RULES.WRITEUP;7 SUN 11-JUN-72 12:29_M PAGE 1:18

[TOPIC\NR.NP

(NP.NR.NP T)

-> (QUOTF (_ 1 1 TOPIC))

[TOPICkNOT-NP

(NP.NEG T)

-> (QUOTE (NOT (# I TOPIC)))

[TOPIC\NOT-S

(5.NEG T)

-> (QUOTE (NOT (_ i ToPic)))

[TOPICXNP_

(NP.NPR T)

-> (QUOTE (# 1 ! TER_))

[TOPIC\OR-NP

OR

(NP.OR T)

-> (QUOTE (_ I _ TOPIC))

[TOPICkOR-S

OR

(S.OR T)

-> (QUOTE (_ 1 I TOP_C))]

[TOPICXPP

AND

(OR (NP.PP (_OT (EQ (CAADDR (# 2))

(QUOTE COMPL))))

(NP.PP.AND.PP (NOT (EQ (CAADDB (# 2))

(QUOT_ COMPL)))))

-> (QUOTE (# _ _ TOPIC))]

[TOPICXREL

AND

(_P.REL T)

-> (QUOTE (, I _ TOP_C))

[TOPIC\S.COMPL

(S.COMPL T)

-> (QUOTE (_ I _ TOPIC))

[TOPICXS.NP

($._P (AND (_;OT (_%Z_ I PADDING))

(::OT (_E_ I DOCUMENT))))

(NOT (S°PRO T))

-> (QUOrZ (_ _ _ TOPIC))]

C.20

; <WEBBER>R[ILES.WRITEUP;7 SU}i 11-JUN-72 12:29_M PAGE 1:19

[TOPIC\S.OBJ

(OR (S.OBJ (AND (NOT (MEM 1 PADDING))

(NOT (MEN I DOCUMENT))))
(S.OHJ._EL T))

-> (QUOTE (# 1 I TOPIC))]

[TOPIC\S.Pp

AND

(OR (S.pP T)

(S.PP.AND,Pp T))

-> (QUOTE (# 1 2 TOPIC))]

[TOPIC\S.V

(S.V NIL)

-> (LIST (PACK (NCONC (QUOTE (# 1 1 TERM)) (QUOTE (ING)))))

[TOPIC\TERM

(OP _NP.N (AND (LESSP (LE_G[H CKEYPH_AS_ (LIST p)))
5)

(GREATERP (LENGTH (KEYPH_ASE (LIST p)))

!)

(NOT (MEM ; PADDING))

(NOT (MEM 1 DOCUMENT))))

(NP.NPR (AND IL_SSP (LENGTH (KEYP_RASE (L_ST P)))

5)

(GREATERP (LENGTH (KLYPHRASE (LIST P)))

I))))
(NOT (NP.RFL T))

-> (KEYPH_ASE (LIST (QUOTE (# Z £D_NTITZ))))]

[TOPIC\TERM2

(NP.N (AND (LESSP (LLNGTH (KEYPH_ASE (LISY P)))

5)

(GREATERP (LENGTh (KEYPHRASE (LIST P)))
i)

(OR (_EM I PADDING)

(MRJl J DOCUMENT))))

(NP.ADJ (AND (NOT (MEM PADDING))

(NOT (MEN DOCUMENT))))
(NOI (NP.REL T))

-> (KEYPHRASE (LIST (QUOTE (, _ £DZNTITY))))]

[TOPIC\AUTHOR

AND

(OR (S.AND._P_ T)

CS.NPR T))

(S.V (HEM I W_TT_))

-> (aUTHOR: (QUOTE (_ 1 1TEBM)))]

C.21

; <WEBBER>RULES.WRITEUP;7 SUN 11-JUN-72 12:297M PAGE 1:2Z

[TOPIC\AUTHOR2

AND

(NP,N (MEM I DOCUMENT))

(NP,PP.NPR (EQU I 5Y))

-> (AUTHOR: (QUOTE (_ 2 2 TZRM)))]

[TOPICXNP.COMPL

(NP.COMPL T)

-> (QUOTE (_ I 1 TOPIC))]

[TOPICXPP.COMPL

(NP.PP.COMPL T)

-> (QUOTE (# 1 1 TOPIC))]

[TOPICXV.INTRANS

(NOT (S.OBJ T))

(S.V T)

-> (APPEND [LIST (QUOTE V:)) (QUOTE (# 2 1 TERM)))]

[TOPIC\V-TRANS

{S.OBJ (NOR (MEMB (QUOTE AND)

(# _))

(_[EMB (_UOTE OR)

(_ I))))

{s.v T)

-> (APPEND (APPEND [LIST

CQUOTE (_ 2 1TER_:)))))) (ADJPH_SE

(QUOTE VP:))

(OUOTE (_

(LIST (NFLCT-ING

IDENTITY))))]

[TOPIC\V-TRANS2

OR

(OR (5.0BJ.A_D T)

(S.OBJ.OR T))

(S.V T)

-> (APPEND (APPEND (LIST

[QUOTE (= 2 1 TER_)))))) (ADJPHRSE

(QUOTE VP:))

(OUOTE (# I

(LIST (NFLCT-ING

I IDENTITY))))]

[TOPIC\EMPNASIS

(NP.PP (MEM 2 EMPHASIS))

(NP.PP.PP T)

-> (*FLAG (QUOTE (# 2 2 TOPIC))) J

[TOPIC\ADJ.SUPER

AND

(NP.DET.POSTABT (_EMB

(NP.N T)

-> (APPiND (LIST

SUPERLATIVE))) (OUOT£ (# 2

(QUOTE SUPERLATiVe)

(CADR (# I))))

(NFLCT-ADJ (CADR (QUOTE

TERM)))]

(CAR

(CAR

(QUOTZ

C.22

; <WESBER>RI!LES.%IRIIEUP;V 5UI_ 11-JUN-72 12:2_PM PA_;E 1:21

[TOPIC\ADJ.COMP

AND

(NP.ADJ.COMP T)

(NP.N T)

-> (APPEND (LIST (NFLCT-ADJ (CAR (_UOTE (# 1 1 TERM))) (QUOTE

COMPARATIVE))) (0UOTE (# 2 TERM)))]

)

(LISPXPRINT (QUOTE (V: NFWRULES)) T)

(RPAQQ NEWRULES (N:AGE N:AGE' N:ANALYSIS N:AVERAGE N:AVG-CONC? N:BASALT

N:CONCENTRATION !!:CORETUBE N:DOCUMENT N:DUST N:ELT N:GABBRO N:HALOGEN

N:LINE# N:MAJOR-ELT N:MAXIMUM N:MINERAL N:M_N_MUM N:MODAL-ANALYSIS

N:MODAL-C$_NC N:NUMBER N:OLDEST N:ONE N:ONEOF N:ONES N:ONES-OF-PRO

N:PHASE I_:RARE/EA_TH N:RATIO N:ROCR N:ROCKT_PE N:SAMPLE !_:SAMPLETYPE

N:SPEC-ACT N:TYPEA N:TYPEB N:TYPZC N:TYPED R:ANALYSIS-REF R:ANALYSIS-TAG

R:AROUND R:B!BLIOGRAPHY R:DOC-ON R:ELT#1R:ELT#2 R:GLASS _:GREATERVAL

R:LESSVAL R:N-DOZ P:ONE R:ONEOF R:ONES R:PHASE R:PHASE#2 R:ROCKTYPE

R:SAMPLE-WITH R:SAMPLE-WITH-COMP R:SAMPLETYPE REFRULE REFRULE? 5:ADD

S:ADDLINE S:ANALYZE S:AND S:B_-ABOUT 5:HE-I_ 5:HE=IN2 S:BE-INTERESTED

S:CHANGE S:COMMO_ S:CO_C_RN S:DELETE S:DELEYE_ 5:DISCOVER S:EDIT S:GIVE

S:GREAT S:I-NEED S:LIKE S:OLD S:OR 5:PAPER-HAVE S:PERTAI:_ S:POSSESS

S:PRINTFILE S:REFER S:SA_PLE-SE-COMPOSED S:5A_PLE=CONTAI _

S:SAMPLE-HAVE#I S:SA[_PLE-HAVE_2 S:SEARCH S:SORT))

(DEFINEr

(N:AGE ((NP.N (_CU ! AIDE))

(NP.PP (!_E['_ 2 SAitPLE))

->

(SS!J_IONF (AGE (_ 2 2 SSST))

)))

(NP.ADJ (M_M _ CLOCk))

(NP.PP (OR (iSEI5 2 SAnPLs)

{SAMPLEP (HEAD (= 2)))))

->

(SSUNIO_F (kGE (# 3 2 6SET)

(# 2 _))

)))

(, E.G. THE AGE OF EACH

TYP_/B ROCK]

(, E.G. THE K-AR AGE OF

EACH TYPE/B ROCK)

C.23

; <WEBBER>RULES.WRITEUP;7 SUN 11-JUN-72 12:29PM PAGE 1:22

(N:ANALYSIS ((NP°N (MEM ! ANALZSIS))

(NOT (NP.ADJ (EQU _ MODAL)))

(OR CNP.PP (MEa 2 (SAMPLE ROCK)))

(NP.PP.PP (MEM 2 (SAMPLE ROCK)))

(NP.PP.PP.PP (MEM 2 (SAMPLE ROCK)))

(DEFAULT (2 NP (DET ALL)

(N SAMPLE)

(NU PL))))

(OR (NP.PP (MEM 2 (PHASE MINERAL)))

(NP.PP.PP (MEM 2 (PHASE MINERAL)))

(_P.PP.PP.PP (MEM 2 (PHASE MINERAL)))

(NP.ADJ#2 (M_M 2 (PHASE MInERAl)))

(NP.PP.ADJ-N (AND (OR (EQU 2 FIN_)

(EQU 2 COARSE))

(MEM I DUST)))

(DEFAULT (2 NP (NPR OVERALL))))

(OR (NP.PP (MEM 2 (ELEMENT OXIDE ISOTOPE)))

(NP.PP.PP (M_M 2 (ELEMENT OXID_ ISOTOPE)))

(_:P.PP.PP.PP (MEM 2 (ELEMENT OXIDE ISOTOPE)))

(NP.ADJ,2 (MEM 2 (ELEMENT OXIDE ISOTOPE)))

(DEFAULT (2 NP (D_T EVERY)

(ADJ MAJOR)

(N ELEMENT)

(NU SG))))

(OR (NP.ADJ (EQU _ CHEMICAL))

(DEFAULT (NPR NIL)))
->

(SSUNIONF (5ATALINE (WHQFILE (# 3 2 SSET))
(4 3 2 SSET)

(# _ 2)

(_ 5 2 SSET))

)))

(N:AVERAGE ((NP._: (MAM I (MEAN AVERAGE)))

(_P.PP (MEM 2 (QUANIITY)))
.>

(8 E.G. ANALYSES OF

KRYPTON IN TYPE/B ROCKS)

(QUOTE (_ 2 2 AVERAGF)

(* N:AVE_AGE I_]VOKES THE RULE D:AVERASE ON THE NP

HANGING OFF TH_ NOD_ HEADED BY AVERAGe)

)))

(N:AVG-CONC? I(_P.N (_E_ I ICONCENTRATION)))

(NP.DEI (AND (_IQU _ THE)

(E_U 2 SG)

(AVERAGE?)))
->

(QUOTE (# AV_:RA&E)

C.24

; <WEBBER>RULES,_RITEUP;7 SUN 11-JUN-72 12:29_M PAGE 1:23

(, N:AVG-CONC? CAUSES A MESSAGE TO BE b_INTED OUT TO

THE USER, ASKING IF HE MEANT BY 'THE CONCFNTRATION',

'THE AVERAGE CONCENTRA. TION' ' THE RULE MATCHES IF

THE USER ANSWERS 'YES' AND INVOKES TH_ RULE

D:AVERA6E,)

)))

(N:BASALT ((NP.N (MEM I (BASALT)))

->

(QUOTE (SEQ TYPEA3))))

(N:CONCENTRATION ((NP,N (MEM I (CONCENTRATION)))

(NOT (_4P.ADJ (EQU I MODAL)))

(OR (NP.PP (MEM 2 (SAMPLE ROCK)))

(NP.PP.PP (_EM 2 (SAMPLE _OCK)))

(NP.PP.PP.PP (MEM 2 (SAMPLE ROCK)))

(DKFAULT (2 NP (DET ALL)

(N SAMPLE)

(NU PL))))

(OR (NP.PP (M£M 2 (PHASK _INE_AL)))

(NPoPP.PP (MEM 2 (PHASE M£N_RAL)))

(NP.PP.PP.PP (r_EM 2 (PHAS_ MINERAL)))

(NP.ADJ_2 (MEM 2 (PHASE MINERAL)))

(NP.PP.ADJ-N (AND (OR (EQU 2 FINE)

(EQU 2 COARSE))

(_EM I UUST)))

(DEFAUL_ (2 NP (NPR OVERALL))))

(05 (NP.PP (MEh 2 (ELEMENT OXIDE ISOTOPE)))

(_,P.PP.PP (MEM 2 (ELEMENT OXIDE ISOTOPE)))

(NP.PP.PP.PP (MEM 2 (ELEMENT OXIDE ISOTOPE)))

(_P.ADJ#2 (MEM 2 (ELEaENT OXIDE ISOTOPE))))

->

(SHU_;IO_F (DAYALINE (WHQFILE (# 3 2 SSET))

(# 3 2 SS_T)

(# _ 2)
(# 5 _ SsET))

(" ?.G. THE

CONCENTRATION OF KRYPTON

IN TYPE/B SAMPLES)

)))

(N:COREIt'BF ((O_ (:_P.:: (_ i (CORETUSE)))

(I_P.Ar)J-:4 (E_U I CORE)

->

IQUCTE (5_Q CORE IUBES))))

(N:DOCUZ, ENT ((NP._: (!dEi _ DOCU_IE_:T))

(_JO_ (5:P._DJ (i_Ef'l i LUNAR)))
->

(QUOTE DOCUI_ENT)))

C.25

; <WEBBER>RULES.WRITEUP;7 SUN 11-JUN-72 12:297M PAGE 1:2_

(N:DUST ((NP.N (OR (MEM _ (SOIL))

(EQU ! DUST)

(EQU _ FINE)))
.>

(QUOTE (SEQ DUSTS))))

(N:ELT ((NP.N (EQU I ELEMENT))

(NOT (NP,ADJ (EQU MAJOR)))

->

(QUOTE (SEQ ELEMENTS))))

(N:GABBRO ((NP.N (OR (MEN (GABBRO))

(EQU MICROGABBRO)))

->

(OUOTE (S_Q TYPEBS))))

(N:HALOGEN ((NP.N (MEM I (HALOGEN)))

->

(QUOTE (SEQ HALOGENS))))

(N:LINE# ((NP.N (EQU I NUMBER))

(NP.ADJ (EQU I LINE)5

(NP.PP (A_!D (EOU : OF)

(M_M 2 ANALYSIS)))

->

(QUOTE (SEQL (# 3 2)5)5)

(N:MAJOR-ELT ((NP,N (E_U I ELEMENT))

(NPoADJ (EOU MAJOR))

.>

(QUOTE (SEO MAJORELTS))))

(N:MAXIMUM ((NP.N fOR (EOU _ MAXIMUM)

(A_;D (MEM I (BIG))

(SUPEPLATIVE I))))

(NP.PP (MEM 2 (QUANTITY)))

->

(QUOTE (# 2 2 MAXIMUM)

(, N:MAXIMUM II_VOKES THE RULE D:MAX£MUM ON THE NP

HANGING OFF TH[NODE HEADED BY _MAXIMUM'.

'MAXIMUM' CAN THEN ACT LIK_ A FUNCTION, RATHER THAN

A SET.)

55)

(N:MINERAL ((NP.N (EQU I MINERAL))

.>

(QUOTE (SEQ ?iINERALS))))

(N:MINIMUM ((NP._ fOR (5_>U MINIMUM)

(A_;D (MEM I (LITTLE))

(SUPERLATIVE I))))

(NP.PP (M_Z 2 (QUANTITY)))

->

IQUOTE (# 2 2 M_MU_;)

))5

(, SEE N:MAXIMUM)

C.26

; <WEBBER>RULES.WRITEUP;7 SUN 11-JUN-72 12:29PM PAGE 1:25

(N:MODAL-ANALYSIS ((NPoN (OR (MEM I ANALYSIS)

(EQU I MODE)))

(OR (NP.ADJ (EQU I MODAL))

(_P.N (EQU I MODE)))

(OR (NP.PP (MEM 2 (SAMPLE)))

(DEFAULT (2 NP (DET EVERY)

(N SAMPLE)

(_U SG))))

(O_ (NP.PP (MEM 2 (PHASE MINERAL ELEMENT OXIDE

ISOTOPE)))

(_P.ADJ#2 (MEH 2 (PHASE MINERAL ELEMENT OXIDE

_SOTOPE))))

->

(SSUNIONF (DATALINE (W_QFILE (# 3 2 SSET))

(# 3 2)

OVERALL

(# _ 2))

(_ E,G. MODAL ANALYSES

OF OLIVINE IN TYPE/C

ROCKS)

)))

(N:MODAL-CONC ((!:P.N ([IE_ (CONCENTBATION)))

(OR (NP.PP (MEn 2 (SAMPLE)))

(NP.PP.PP (MEM 2 (SAMPLE)))

(DEFAULT (2 NP (DET EVERY)

(N SAMPLE)

(NU SG))))

(OR (NP.PP (MEM 2 (PHASE MINERAL ELEMENT OXIDE ISOTOPE)))

(NP.ADJ#2 (MEM 2 (PHASE MINERAL _LEMENT OXIDE

ISOTOPE))))

->

(SSUNIONF (DATALINE (_HQFILE (# 2 2 S6ET))

(N:NUMBER ((_JP.N (EQU 1 _4UMBE_))

(_:P.PP (EOU I OF))

-->

(OUOTE (= 2 2 NUMBER)

(. 2 2 SSET)

OVERALL

(_ 3 2)))))

(_ N:NUr_BE_ INVOKES D:I_UF_B5R ON TdE NP DEPE[{DE:_I ON

'NUMBER'. E.G. 'THE i_UMbER OF TYPE/A SAMPLES' IS

I_TERPRFTED AS (SE_L (NHM_ER X /

S_Q TYPEAS): T)))

(N:OLDEST

)))

(NP°N (AI_D (MEM (OLD))

(SUPERLATIVE q)))

->

(OUOT5 (# 2 2 OLDEST)

C.27

; <WEBBER>RULES.WRITFUP;7 SUN 11-JUN-72 12:29_M PAGE 1:26

(* N:OLDES7 INVOKES THE RULE D:OLDEST ON THE NP

DEPENDENT ON "OLDEST". LIKE N:NAX£MUM AND N:NUMBER,

IT ALLOWS "OLDEST" TO ACT LIKE A _UNCTION, RATHER

THAN A SET)

55)

(N:ONE ((NP.PRO (EQU ! O_E))

->

(PROGN (SETQ ANT2VAR (ANT_CEDANT (QUOTE (# _ IDENTITY)55

(* N:ON_ MATCHES TH_ ANAPHORIC PRONOUNS 'ONE' AND

'ONES' THE INTERPRETATIO_ DEPENDS ON THE CLASS OF

THE ANTECFI!DANT.)

)
(MAPC (SCOPEVA_S ANTEVAR)

(FU_[CTION ANTEQUANT))

(NEWCLASS ANTEVAR))))

(N:ONEOF ((NP.PRO (EQU I ONE))

(NP.PP (EQU I OF))

->

(QUOTE (# 2 2 b!RULES)

#, N:ONEOF MATCHES THE PRO[_OUNS 'ONE' AND 'ONES'

WHEN FOtLOW_D _Y A PARTITIVE CONSTRUCTIN

FXPRESSTNG THE SET. E.G, 'ONE OF THE TYPE/B ROCKS.'

T_E INT_PFETATION IS THE CLASS O_ _ THE DEPENDEL4T

)))

(N:ONES ((NP.PRO (EQU I ONES))

(NP.PP (AND (EQU 0_)

(:{NO (CAAD_ (# 2))

(QUOTE PRO))))

->

(OI]OTE (# 2 2 NRULES)

(* N:ONES IS LIKE N:ONEOF, BUT £S USED TO MATCH

SPECIAL PARTITIVES CONSTRUCTED BY THE _ARSER.)

)5)
(N:O_ES-OF-PRO ((':?.PRO (EQU _ O_ES))

(NP.PP (IND (EQU I OF)

[NO (CAADR (# 2))

(QUOTE PRO))))

->

(_:]OT_ (" 2 2)

C.28

; <WEBBFR>RULES.WRI_EUP;7 SUN 11-JUN-72 12:292M PAGE 1:27

(* N:ONES-OF-PRO HATCH_;S NODES _ITH PARTITIVE

CONSTRUCTIONS, WHERE YHE HEAD OF THE PARTITIVE IS

ITSELF ANAPHORIC.)

)))

(N:PHASE ((NP.N (EOU I PHASE))

->

(QUOTE (SEQ PH&SES))))

(N:RARE/EARYH ((NP.N (EQU _ RARE/EARTH))

(QUOTE (SEQ RARE/EARTHS))))

(N:RATIO ((NP.I¢ (EOU I RATIO))

(OR (NP,ADJ.N/N (AND (NEM I (ELEMENT ISOTOPE OXIDE))

(I_EH 2 (ELZHEN_ ISOTOPE OXIDE))))

(NP,ADJ-ADJ (AI_D (HEM I (ELEMENT ISOTOPE OXIDE))

(HEM 2 (ELEMENT ISOTOPE OXIDE)))))

(OR (EP.PP (AND (OR (EQU I IN)

(EQU I FOR))

(ME_ 2 (PHASE M£NERAL))))

(NPoPP.PP (AND (OR (EQU I IN)

(EQU I FOR))

(MEM 2 (PHASE _INEBAL))))

(DEFAULT (2 NP (NPR OVERALL))))

(OR (NP,PP (A_D (OR (EQU I IN)

(EQU I OF)

(EQU I FOR))

(MEH 2 (SAMPLE ROCK))))

(NPoPP.PP (AND (OR (EQU I IN)

(EQU I OF)

(E_U I FOR))

(M_;M 2 (SAMPLE ROCK))))

(DEFAULT (2 14P (D:_T EVERY)

(_ 5AhPLE)

(_u sG))))
->

(APPLY (FUNCTIO_ SSUNIONF)

(LIST (_UILDg (RATIO (QUOTE #)

(QUOTE #)

(# _ 2 SS_T)
(# 3 2 SS_T))

(TABFOBM (# 2 1 hEAD))

(TABFORM (# 2 2 HEAD))))

(, E.G. POTASSIUM / RUBIDIUM RATIOS INTERPRETS AS

(SSUNION XI / (SEQ SAnPLES) : T ;

tRATIO (QUOTE _20) (QUOTE RB) XI

(OUOTI OVEPALL))))

C.29

; <WEBBER>RULES.WRITEUP;7 SUN 11-JUN-72 12:29_M PAGE 1:28

)))

(N:ROCK ((NP.N (OR (£QU I ROCK)

(ZQU _ VOLCANIC)))

->

(OUOTE (SEQ VOLCANICS))))

(N:ROCKTYPF ((NP.N (MEM I (TYPE)))

(OR (NP.PP (AND (EQU I OF)

(EQ (HEAD (_ 2))

(QUOTE ROCK))

(TAG (# 2)

(QUOTE USED)

T)))

(NP.ADJ (EQU I ROCK)))

_>

(QUOTE (SEQ ROCKTYPES))))

(N:SAMPLE ((OR (NP.N (E_U SAMPLE))

(NP.ADJ-N (AND (EOU I LUNAR)

(EOU 2 MATERIAL))))

(OR (14P.ADJ (FQU I LUNAR))

(DEFAULT (I ADJ NIL)))

_>

(OUOTE (S£Q S%MPLES))))

(N:SAMPLETYPE ((NP.N (MEi_ (TYPE)))

(o_ (_p. PP (ANU (E_U I OF)
(EQ (HEAD (_ 2))

(QUOTE SAMPLe))

(TAG (# 2)

{QUOTE USSD)

T)))

(NP.ADJ (EQU I SAMPLE)))

_>

(OUOT_ (S_Q SAnPLETYPES))))

(N:SPEC-ACT ((NP.V? (EQU i ACTIVITY))

(NP.ADJ (EQU SPECIFIC))

(NP.PP (_E_ 2 (ISOTOPE)))

(OR (NP.PP (MEM 2 (SAMPLE)))

(NP.PP.PP (PiEN 2 (SAMPLE)))

(DEFAULt (2 NP (DET EVERX)

(N SAMPLE)

(NU SG))))

->

(QUOTE (DAT_LIN_ (WHQFILE (# _ 2))

(# _ 2)

OVERALL

(_ 3 2))

)))

(, E.G. THE SPECIFIC

ACTIVITY OF C056 IN

S_00_3)

/

C.30

; <WEBBER>RULES,WRITEUP;7 SU_ 11-JUN-72 12:29_M PAGE 1:29

(N:TYPEA ((NP,N (OR (EQU I PARTICLE)

(EQU I ROCK)

(EQU I SAMPLE)))

(OR (NP,ADJ (EQU : TYPE/A))

(NP,ADJ-ADJ (AND (EQU I HIGM)

(OR (EQU 2 ALKALI)

(EQU 2 ALKALINE)

(MEM 2 (RUBIDIUM)))))

(NPoADJ-ADJ-ADJ (AND (EQU I F£NE)
(EQU 2 GRAINED)

(OR (EQU 3 IGNEOUS)

(EQU 3 CRYSTALLINE)))))

->

(QUOTE (SEO TYPEAS))))

(N:TYPEB ((NP.N (OR (EQU I PARTICLE)

(EQU I SAMPLe)

(EQU I ROCK)))

(OR (NP,ADJ (EOU TYPE/B))

(NP°ADJ-ADJ (AND (_QU I LOW)
(OR (EQU 2 ALKALI)

(EQU 2 ALKALINE)

(MEM 2 (RUmIDIUM)))))

(NP,ADJ-ADJ-ADJ (AND (EQU I COARSE)

(EQU 2 GRAINED)

(OR (EQU 3 CRYSTALLINE)

(EQU 3 IGNEOUS)))))

->

(QUOTE (S_:O yypEB5))))

(N:TYPEC ((OR (N_.N (OR (ZQU _ 5RECCIA)
(IQU I MICROBRECCIA)))

(NP.A_J-N (AND (OR (EQU 2 PARTICLE)

(EQU 2 SAMPLE)

(E_u 2 ROCk))

(EQu I TYPE/C))))

->

(GUGTE (SEQ TYPEC$))))

(N:TYPED ((OR (NP,N (OR (EQU i SOIL)
(_QU _ DUST)

(NP.ADJ-N (AND (OR (EQU I PARTICLe)

(EQU I SAMPLE)

(E_U _ ROCK))
(EQU I iYPE/D))))

-->

(QUOTE (SEQ DUSTS))))

C.31

; <WEBBER>RULES.WRITEUP;7 SUN 11-JUN-72 12:297M PAGE 1:30

(R:ANALYSIS-REF ((NP.N (MEM I (ANALYSIS)))

(OR

(_IP.PP

(DOCP (CADR (ASSOC (_UOTE I_R)

(CDR (CONSTITUENTS

(_ 2)))))))

(NP.PP.PP

(DOCP (CADB (AS50C (_UOTE N=_)

(CD_ (CONSTITUENTS

(_ 2)))))))

(NP.ADJ#2 (DOCP (CADR (# 2)))))

.>

(QUOTE (REF. X (# 2 2)))))

(R:ANALYSI$-TAG ((NP.N (MEM I (ANALYSIS)))

{On (NP.PP.ADJ-NPB (AND (EQU I TAG)
(NUM_ER_: (CADR (_ 2)))))

(NP.PP.PP.ADJ-NPR

(AND (EQU I TAG)

(NUMBERP (CADB (# 2))))))

.>

(QUOTE (TAG. X (# 2 2)))))

(R:AROUND ((NP.N (MEM I ANALYSIS))

(NP.PPoCOMP (AND (OR (EQU 3 AROUND)

(EQU 3 APPROXIMATELY))

(_EM 2 (_LEMENT ISOTOPE OXIDE))))

->

(BUILDQ (ABOUNDVAL X _)

(LIST (QUOfE OUOTE)

(C0i45 (= 2 _ INTEGER)

(_ 2 5 UNIT)))

(, R:AROU_D rIATCHES NP'S LIKE 'ANALYS_S WITH AROUND

7 PPM TITANIUM' ThE INTERPRETATION OF TH_

RESTRICTION TH£T R:AROUND PRODUCE_ IS

(AROUND X (7 . PPM)), WHERE 'X' R_FKRS TO THE

A_ALYSE$.)

)))

(R:BIBLICGRAPHY ((NP.N (EQU I BIBLIOGRAPHY))

(NP.PP (OR (EQU I 0_)
(_Qu I ABOUT)))

.>

(QUOTE (ABOUT X (# 2 2 TOPIC)))))

(R:DOC-ON ((_P.I_ (MEM i DOCUMSNT))

(_P.PP T1
->

(q[IOY? (_50qT X (# 2 2 TOPIC)))))

C.32

; <WEBBER>RULES.WRITEUP;7 SUN 11-0UN-72 12:29_M PAGE 1:31

(R:ELT_I ((NP.N (EQU I ELEME_T))

(NP.ADJ (A_D (HEM I (ELEMENT OX£DE £SOTOPE))

(_IOT (_EM I (SET)))))
->

(QUOTE (_QUAL X (# 2 I)) (* E.G. THE U_ANIUM

ELEMENT)

)))

(R:ZLT#2 ((NP.N (EQU I ELEMENT))

(NP.ADJ._IP (AND (_EM I (ELEMENT OXIDE ISOTOPE))

(HEM I (SET))))

->

(QUOTE (MEMB X (# 2 1 NRULSS)) (* E.G. A RARE-EARTH

ELEMENT)

)))
(R:GLAS_ ((NP,N (HEM I (SAMPLE FRAGMENT PARTICLE)))

(NP.ADJ (EQU I GLASS))
->

(QUOTE (COI_TAiN X (# 2 I)))))

(R:GEEATERVAL ((NP.N (HEM ANALYSIS))

(NP.PP.COMP (A_D (Oh (EQU 3 GREATERTHAN)

(EQU 3 _ORETHAN))

(HEM 2 (ELEMENT ISOTOPE OXIDE))))

->

(BUILDQ (GREATER X #)

(LIST (QUOTE QUOTE)

(CONS (# 2 _ INTEGER)

(# 2 5 UNIT)))

(, R:GREAT_fRVAL IS THE ANALOGUE OF R:AROUND FOR

PHRASES WITH 'GREATER THAN' OR 'MORETHAN'.)

)))

(R:LESSVAL ({NP._: (HEM I ANALYSIS))

(NP.PP.COMP (AND (OR (EQU 3 LESSTHAN)

(EQI] 3 FEWERTHAN))

(MEM 2 (ELEMENT OXIDE ISOTOPE))))
->

(BUILDQ (LESSVAL X _)

(LIST (QUOIE QUOTE)

(CCNS (# 2 _ INTEGER)

(# 2 5 UNIT)))

)))

(R:II-DOC ((NP.N (ME_I I DOCUMS:4T))

(NP. ADJ,_P T)

->

(QUOTE (ABOUT X (# 2 1 TOPIC)))))

(, R:LESSVA£ IS THE

ANALOGUE r F R:AROUND FOR

PHRASES WITH 'LESS

THAN'.)

C.33

; <WEBBER>RULES.WRITEUP;7 SUN 11-JUN-72 12:297_ PAGE 1:32

(R:ONE ((NP.PRO (EQU I ONE))

->

(PROGI (_EWPX ANTEVAR

(_ R:ONE MATCHES THE ANAPHORIC PRONOUN 'ONE'.

ITS INTERPRETATION IS THE SET OF RESTRICTIONS ON

THE ANTEAEDANT OF 'ONE' THAT WERE NOT _BODUCED FROM

THE VERB PHRASE. SEE THE FUNCTION DESCRIPTION

N_WPX FOR FURTHER DETAIL,)

))))

(R:ONEOF ((NP.PBO (EQU I ONE))

(NP.PP (AND (EOU OF)

(NOT (EQ (CAADR (# 2))

(QUOTE PRO

(* R:ONEOF MATCHES THE PRONOUN 'ONE' WHEN IT

DO_INATES A PARTITIVE CONSTRUCTIO_ WHOSE HEAD IS NOT

A PRONOUN. E.G. 'WHICH ONE OF THE TYPE/A hOCKS'.

R:ONEOF CALLS FOR THE CLASS RESTRICTIONS ON THE H_AD

OF THE PARTITIVE NP.)

)))))

->

(QUOTE (# 2 2 RRULES))))

(R:ONE5 ((NP.PRO (EQU I ONES))

(NP.PP (AND (EQU OF)

(NEC (CAADR (# 2))

(QUOTE PRO

(, R:O_S IS THE ANALOGUE OF R:ONEOF USED FOR THE

PRONOUN 'ONES' INSERTED BY THE PARS?R FOR D_EP

_IVES. E.G.SIRUCTURE PART _

'ALL THE BOYS' IS PARSED AS 'ALL ONES OF THE BOYS'.)

))))

-->

(O[IOTE (# 2 2 RRULE5))))

(R:PHASE ((NP.N (EQU I PHASE))

!NP.ADJ (hEM I (PHASE MINERAL)))

->

(QUOTE (EQUAL X (# 2 I)))))

(R:PHASE_2 ((NP,N (EQU I PHASe))

(NP,PP (OR (_M 2 (SAMPLE))

(SAMPLEP (hEAD (# 2)))))

->

(QUOTE (CONTAIN (# 2 2 SSET)
X))))

OF

C.34

; <WEBBER>RULES.WRITEUP;7 SUN 11-JUN-72 12:29[M PA_E 1:33

(R:ROCKTYPE ((NP.ADJ-N (AND (_QU I ROCK)

(HEM 2 (TYPE))))

(NP.PP (HEM 2 (SAMPLE)))

_>

(QUOTE (MEMBER" (# 2 2)

x) (* [;.G. THE ROCK TYPE OF

SA_IPLE I_3)

(, ;_.G. SAMPLES WITH

BERYLLIUM)

)))
(R:SAMPLE-WITH ((NP.N (HEM i SAMPLE))

(NOT (NP.PP.COMP T))

(NP.PP (AND (EQU I WITH)

(HEM 2 (_LEMENT ISOTOPE OXIDE))))

(OR (NP,PP (AND (EQU I IN)

(HEM 2 (MINERAL _HAEE))))

(NP.PP.PP (AND (SQU I IN)

(HEM 2 (MINERAL PHASE))))

(DEFAULT (2 NPR NIL)))

->

(QUOTE (CONTAIN X (# 3 2)

(# _ 2))

)))

(R:SAMPLE-WITH-COMP ((NP.N (HEM I (SAMPLE)))

(NP.PP.COMP (AND (EQU I WITH)

(HEM 2 (ELEMENT ISOTOPE OXIDE))))

(OR (NP.PP (HEM 2 (PHASE MINERAL)))

(NP.PP.PP (HEM 2 (PHASE MINSRAL)))

(D_FAULT (2 NPR NIL)))

->

(QUOTE (CONTAIN' X (# 2 2)

(# _ _)

(# 2 _ TERM))

(" E.G. SAMPLES WITH

MORT THA_ 6 PPM

BERYLLIUM IN PLAG)

)))
(R:SAMPLETYPE ((_P.ADJ-N (AND (EOU I SAMPLE)

_n_n 2 (TYPe))))

(I_P.PP (MEM 2 (SAMPLE)))

->

(OUOTE (MEMBER' (# 2 2)

x))))

(REFRULE ((T T)

->

(QUANT (FO_ EVERY X / DOCUMENT : (ABOUT X (# Z TOPIC))

(PRINTOUT X)))))

(REFRULE? ((T (iNT_RP P))

->

(OUOT_ (_ _))))

C.35

; <WEBBEB>RULES.WRITEUP;7 SUN 11-JUN-72 12:29_M PAGE 1:34

(S:ADD ((S.V (MEM I (ADD)

(S.OBJ.NPR7 (AND

)

SAMPLSP (CADR (# I)))

MEM 2 (PHASE MINERAL))

MEM 3 (ELEMENT OXIDE ISOTOPE))

NUM_ERP (C_DR (# _)))

MEM 5 (UNIT))

DOCP (CADR (# 6)))

NUM_ERP (CADR (# 7)))))

(S.PP (MEM 2 (FILE)))

.>

(PRZD (APPLY (FUNCTION PRENEWLINE)

(LIST (# 3 2)

(# 2 I)

(# 2 2)

(_ 2 3)

(# 2 4)

(_ 2 5)

(# 2 6)

(# 2 7)))

(. E.G. ADD THE LINE (SI_003, OVERALL, BE, 6, PPM,

D7Z-15_, _) TO APOLLO11)

)))

(S:ADDLINE ((S.IMP T)

(S.V (OR (EQU ADDLINE)

(EQU ADD)))

(S.OHJ.NPR T)

(OR (S.PF (M_M 2 (FILE)))

(S.O_J.PP (ME_ 2 (FILE))))

_>

(BUILDO (APPLY (FUNCTION PREN_WLINE)

(QUOTE #))

(CONS (QUOTE (# a 2))

(QUOTE (# 3 1T_Rn)))

(E.G. ADD

(_ SIZOZ3 OVERALL BE 6 PPM D70-15_ _)

TO APOLLO11 THE INTERPRETATION IS

(APPLY (FUNCTION PRENEWLIN5)

(OUOWZ
(APOLLO11 $I£@_30VZRALL BE 6

PPh D70-15_ 0)))))))

C.36

; <WEBBER>RULES.WRITEUP;7 SU_, 11-JUN-72 12:29PM PA_E 1:35

(S:ANALYZE (CS.NP-V (AND (MEM 2 (ANALYZE))

(COND

((NOT (MEMB (CADS (# I))

(QUOTE (SOMEONE SOMETHING ANYONE)

)))

(PRINt (QUOTE I PRESENTLY IGNORE SUBJECTS

OF THE VERB)

T)

(PRINT HEAD T))

(T T))))

(S.OBJ (MEM I (SAMPLE)))

(s. PP (FOu I FOR))
->

(SSUNIONF (DATALINE (WHQFILE (# 2 I SSET))

(# 2 1SSET)

OVERALL

(# 3 2 SSET))

(* E.G. HAS SIS_.Z3 BEEN ANALYZED P OR KRYPTON? ThE

INTERPRETATION IS ('rEST (DATALINE

(WHQFILE S iGZ_3) $Ib_83 OVERALL K_)))

)))

(S:AND (AND (S.AND T)

->

(PROD (# ! I))))

(S:BE-ABOUT ((S.NP (MEM I DOCUMENT))

(5.V (_OU I BE))

(S°pP (OR (EQU I 0_)

(_QU I ASOUT)

(_QU I TO)

(EQU I FOR)))
->

(PRZD (_RINTOUT (_ 3 2 REES)))))

(S:SE-IN ((S.NP-V (AND (MEM 2 (BE EXIST OCCUR))

(MEM I (ELEMENT OXIDE _SOTOPE PHAS_ MINERAL))))

(OR (3.PP (AND (EQU ! IN)

(MEN 2 (SAMPLE))))

(5.PP.PP (AND (EQU I IN)

(MEM 2 (SAMPLE)))))

(OR (S.PP (AND (EQU I IN)
(MEM 2 (PHASE MINERAL))))

(DEFAULT (P NPR NIL)))

-->

(PRED (CONTAIN (# 2 2 SET?)

(# I i)

(# 3 2)))))

C.37

; <WEBBER>RULES,WRITEUP;7 SUN 11-JUN-72 12:29PM PAGE 1:36

(S:BE-IN2 ((S.NP,COZP (M_M (ELEMENT OXIDE ISOTOPE PHASE MINERAL)))

{s.v {MEM I (_E ZXlST OCCUR)))

(OR (S.PP (AN_ (SOU I IN)

(OR (MEM 2 (SAMPLE))

(SAMPLEP (HEAD (# 2))))))

(S,PP.PP (OR (MEM 2 (SAMPLE))

(SAMPLEP (HEAD (# 2))))))

(OR (S,PP (AND (EOUI IN)

(MEM 2 (PHASE MINERAL))))

(DEFAULT (2 NPB NIL)))
->

(PRED (CONTAIN' (# 3 2)

(# I I)

(# _ 2)
(# I 2 TERM))

(, E.G. IS THE_E MORE THAN 7 PPM KRYPTON IN $10Z03?

THE INTERPRETATION IS {TEST

(CONTAIN' (QUOTE SIZZ_3) (QUOTE K_)

(MORETHAN 7 PPM))))

)))

(S:BE-INTERESTED ((S.V (EQU I BE))

(S.ADJ (EQU I INTErESTEd))

(S.PP (EQU I I_I))

->

(PRED (PRINTOUT (# 3 2 REFS)))))

(S:CHANGE ((S.V (EOUI CHANGE))

(S.IMP T)

(S.OBJ,Pp (AND (EQU I OF)

(MEM 2 ANALYSIS)))

{OR (S,OBJoPP (EQU I TO))

_S.05J.PP.PP (EQU I TO)))
->

(PRED (CHANGE,LINE {# U 2)

{QUOTE (# 3 1 HEAD))

{QUOTE (# 5 2 HEAD))))))

(S:COMMON {(S.NP.V (AND (MEM _ (PHASE MINERAL ELEMENT ISOTOPE OXIDE))

(LOU 2 COMMON)))
(S.PP (EQU I TO))

->

(PRED (CONTAII_ (# 2 2)

(_ i I))

(E,G° WHAT PHASES ARE COMMON TO ALL SAMPLES?))))

(S:CONCERN ((S.NP (MEM I DOCUMENT))

(s.v {_EM I CONCERN))

(S.O_J T)
->

(P_ED (PRINTOUT (_ 3 I REFS?)))))

C.38

; <WEBBER>RULES,WRIYEUP;7 SUN 11-JUN-72 12:29_ PAGE 1:37

(S:DELETE

(S:DELETE_

(S:DISCOVER

(S:EDIT

(S:GIVE

(S:GREAT

((S.IMP T)

(S.V (EQU I DFLETE))

(S.OBJ (MEM I ANALYSIS))

->

(PRED (DELETEILINE (# 3 I)))))

((S.I_P T)

(S.V (EQU I DELETE))

(S.OBJ.NPR (LINEP (_ I)))

(OR (S.PP (MEM 2 (FILE)))

(S.OBJ.PP (MEM 2 (FILE))))

->

(e

((

(

(

(

(

UOrE (DELETE# (# _ 2)

(" 3 I)))))

NOT (S.IMP T))

S.V (MEM I (DISCOVER CONTAIN)))

S,OBJ (MEM I (ELEMENT OXIDE ISOTOPE

OR (SoPP (MEM 2 (MINERAL PHASE)))

(DEFAULT (2 NPR NIL)))

O_ (S.PP (MEM 2 (SAMPLE)))

(S°PP.PP (MEM 2 (SAMPLE)))

(DEFAULT (2 NP (DET ANY)

(N SAMPLE)

(NU PL))))

(S.HP (COND

((_OT

(PRrNI

((c.v (EQU

(S.OBJ.NP

(oR (s.pp

(S.OP

->

(FRED (_D

(PRINT

(T T)))

(EWU I SOMETHING))

(_UOTE I PRESENTL_

VERB)

T)

HEAD T))

(CONTAIN (# 5 2 SET?)

(_ 3 I)

(_ _ 2)))))
! EDIT))

P (LIN;P (_ I)))

(MEZ 2 (FILE)))

J.PP (I_EM 2 (FILE))))

ITLINZ (# 3 2)

(# 2 _)))))

((3.v (MEM _ GIVE))
(S.OHJ T)

(OR (S.I_ r)

(S.O-MODAL T))

->

(PRED (PRINTOUT (# 2 I

((S.NP-V (MZM 2 GREAT))

->

(PRED (= _ I))))

_EFS?)))))

MINERAL

IGNORE

PHASE)))

SUBJECTS OF THE

r

C.39

; <WEBBER>RULES,WPITEUP;7 SUN 11-JUN-72 12:29D_ PAGE 1:38

(S:I-NEED ((S.Np (EQU I I SG))
(S.V (OR (EQU ! NEED)

(EQU I WANT)))
(S.OBJ T)
->

(PREO (PRINTOUT (# 3 I REFS?)))))
(S:L!KE ((S.V (hEM I LIK_))

(S.OBJ T)
->

(PPED (PRINTOUT (# 2 1REFS?)))))
(S:OLD ((S.NP-V (HFM 2 OLD))

->

(PREP (FOR EVERY X_ / (AGE (# 1 I))

: T ; (PRINTOUT X_)))))
(S:OR ('jp (S.OR T)

->

(P_ED (_ _ I))))

(S:PAPER-HAVE ((S,NP (MEM DOCU_IENT))

[S.V (EQU I HAVE))

(S.OBJ T)
->

(PRED (PRINTOUT (# 3 I REFS?)))))

(S:PERTAIN ((S.NP (MEM I DOCUI_E_;T))

(S.V (M_M I PERTAIN))

(S.Pp (OR (_oU WI_H)

->

(_REO (ABOUT (# _ _)

(# 3 2 TOPIC)))))

(S:POSSESS ((S.NP-V (AND (MEH ! (WE YOU TMEZ))

fM_ 2 (Possess))))
(s.osJ T)

->

(PRED (EXIST (# 2 1)))))
(S:PRINTFILE ((0_ (S.IMP T)

(S.O-_IODAL T))

(S.v (MEM _ (GIVE]))

(S.OBJ (MEM (FILE)))
->

(BRED (PRINTFILE (# 3 I)))))
(S:REFE_ ((S.NP (MEM I DOCUMENT))

fS.V (EQU _ REFER))

(S.PP (£QU I TO))
->

(PPED (ABOUT (= I)

(# 3 2 TOPIC)))))

(S:SAi@PLE-BZ-COMPOSED ((S.NP-V (AND (MEM I (SAMPLE))

_ZOU 2 _E)))

{S.OBJ.CO_Ip (MEM 1 (PHA5_ _INEIAL)))
->

(PRED (CONTAIN' (# I 1)

(# 2 1)

(# 2 2 _s2_._)))))

C.40

; <WEBBER>RULES.WRITEUP;7 SUN 11-JUN-72 12:29PM PAGE 1:39

(S:SAMPLE-CONTAIT¢ (AND (S.NP (MEM I (SAMPLE)))

(S.V (OR (EQU I HAVE)

(EQU I CONTAIN)))

(OR (S.OBJ (MEM I (ELEMENT OXIDE ISOTOPE MINERAL)

))

(S.OBJ.AND (MEM I (ELEMENT OXIDE ISOTOPE

MINERAL))))

(OR (S.OBJ.PP (MEM 2 (MINERAL PHASE)))

(S.PP (MEM 2 (MINERAL PHASE)))

(DEFAULT (2 NPR NIL)))

->

(PRED (CONTAIN (# 1 1 SET?)

(# 3 1)
(# _ 2)))))

(S:SAMPLE-HAVE#1 ((S.NP-V (AND (HEM I (SAMPLE))

(HEM 2 (HAVE CONTAIN))))

(S.OBJ.COMP (HEM I (ELEMENT OXIDE ISOTOPE)))

(s.PP (HEM 2 (PHASE MINERAL)))
->

(PRED (CONTAIN' (# 1 I)

(# 2 1)

(# 3 2)

(# 2 2 TERM)))))

(S:SAMPLE-HAVE#2 ((S.NP-V (AND (HEM I (SAMPLE))

(HEM 2 (HAVE CONTA£N))))

(S.OBJ.COMP (HEM I (ELEMENT OXIDE ISOTOPE PHASE

MINERAL)))

->

(P_ED (CONTAIN' (# 1 I)

(. 2 I)
(# 2 2 TERM)))))

(S:SEARCH ((S.V (MEM I SEARCH))

{S.PP (OR (EQU FOR)

(_O_, I_)

(EQU ON)))

_>

(PRED (PRINTOUT (# 2 2 REFS?)))))

(S:SORT ((S.V (EOU I SORI))

(S.IMP T)

->

(PRED (SORTNEW))))

)

(LISPXPRINT (QUOT_ (V: TREEFRAGS)) T)

(RPAQQ TREFFRAGS (ADJ.NP NP.ADJ NP.ADJ#2 NP.ADJ-ADJ NP.ADJ-ADJ-ADJ

NP.ADJ-N NP.ADJ.COMP NP.ADJ._P NP.ADJ.NPR NP.ADJ,N/N NP.ADVP NP.AND

NP.AND2 NP.COMPL NP.DET P;P.DET.ART NP.DET,COMP N_.D_T.COMP-UNIT

NP.DET.INTFGER NP.DET,MANY NP.D_T,POSTART NP°N NI°NEG NP.NOM NP.NPR

NP.NR.NP NP.NR.S NP.OR N_,OR2 NP.PP NP.PP,ADJ-N NP,PP.ADJ-NPR NP.PP.AND

NP.PP,AND.PP NP.PP.COMP NP.PP.COMPL NP.PP,NPR NP.PP.PP NP.PP.PP#_

NP,PP.PP.ADJ-NPR Np. PP.PP,COMP-UNIT NP.PP,PP.PP NP,PP°PP.PP,ADJ-NPR

C.41

; <WEBBER>RULES.WRITEUP;7 SUN 11-JUN-72 12:29_i% PAGE I:_0

NP.PBO NP.OREL NP,REL S.ADJ S.AND S.AND.NPR 5.COMP S.COMP-N S,COMPL

S.CONPL-THAN S.COMPL.OBJ S.DCL S,DCL-S S.IMP S.IMP-S $.NEG S.NEG-S

S.NP S.NP.COMP S.NPR S.NPQ 5.NPU S.NP-V S,08J S,O_J.ADJ#2 S,OBJ.AND

S,OBJ.CO_P S.OBJ.NPP S.O5J.NPR7 S.OBJ.OR S.OBJ.PP S.OBJ.PP.PP

S,OBJ.PP.PP.PP S,OBJ.PP,PP.PP.PP S.OBJ.REL S.OR 5.PP S.PP#I S,PP.AND

S.PP.AND.PP S.PP,PP S,Q S.Q-MODAL S,Q-NEG S.Q-S S,V S,VP))

(DEFINEV

(ADJ.NP (ADJ ((NP NIL I))))

(NP.ADJ (NP ((ADJ NIL I))))

(NP.ADJ#2 (NP ((ADJ NIL 2))))

(NP.ADJ-ADJ (NP ((ADJ NIL)

(ADJ NIL 2))))

(NP.ADJ-ADJ-ADJ (NP ((ADJ NIL I)

(ADJ NIL 2)

(ADJ NIL 3))))

(NP.ADJ-N (NP ((ADJ NIL I)

(N NIL 2))))

(NP.ADJ.CO_P (NP ((ADJ ((COMPARATIVE))

I))))

(NP.ADJ.NP (NP ((ADJ ((NP NIL I))))))

(NP.ADJ.NPR (NP ((ADJ ((,_PR NIL I))))))

INP.ADJ.N/N (NP (IADJ ((<P ((N ((N NIL

/

(N NIL

((ADVP ((ADV NIL I)

(NP NIL Z))))))

(NP.ADVP (NP

(NP.AND (NP

(NP.AND2 (NP

C

(NP.DET (NP

(NP.DET.AET

(NP.DET.CqMP

(AND

AND

C

(DET

NU

(NP

(NP.DET.CSMp-UNiT

1)

2))))))))))

(NP NIL _)))]

NIL I)

NIL 2))))

((D[T ((_T :_IL I))))))

((DET ((POSTART ((COMP ((ADV

MA_Z))))

(_u _4IL 3))))

(_p ((_i: 1 ((POSTART ((COMP ((ADV

(NP.DET.INT2GER

(NP.DET.;IANY (NP

(NP.DET.P[START

(NP.N (NP ((_ NIL

(NP.NSG (NP (NEG

MUCH)))))))

(NP ((DET ((POSTART ((NP ((INTEGEI
MANY)))))])

((DET ((NP ((INTEGER NIL I)))

YANY))

(};U NIL 2))))

(NP ((DE% ((POSTART NIL I))))))

I))))

(NP ((D_ NIL 2))

I))))

NIL 2)))))

NIL I)

((INTEGER NiL 2)

(UNIT NIL 3)))))

NIL I)))

C .42

; <WEBBER>RULES,WRITEUP;7 SUN 11-JUN-72 12:29PM PAGE 1:41

(NP.NOM (NP (NOM (S NIL I))))
(NP.NPR (NP ((NPR NIL I))))

(NP.NR.NP (NP ((NR ((NP NIL I))))))

(NP.NR.S (NP ((NR ((S NIL))))))

(NP.OR (NP (OR (NP NIL I))))

(NP.OR2 IMP (OR (NP NIL !)

(NP NIL 2))))

(NP.PP (NP ((N NIL 4)

(PP ((PREP NIL)

(NP NIL 2))

3))))

(NP.PP.ADJ-N (Np ((pP ((ADJ NIL 2

(N NIL I))

(NP.PP.ADJ-NPR (NP ((PP ((NP ((AO

(NP

(NP.PP.AND (NP ((PP ((PREP NIL I)

(NP (AND (NP

(NP

(NP.PP.AND.P_ (NP ((PP (AND (PP (

(NP.PP.COMP

)

))))
J NIL 1)

R _IL 2))))))))

NIL 2)

NIL 3))))))))

(PREP NIL I)

(NP NIL 2))))))))

(NP

((PP

((PR_P NIL I)

INP ((DET ((POSTART

(NP.PP.COMPL (NP ((PP

(NP.PP.NPR (NP ((PP ({

(

(NP.PP.PP (NP ((_P ((N

2))))))

((_P ((COMP

PRFP NIL I)

NP ((NPR NI

P ((PP ((PR

(NP

(P_EP NIL 3

(_ ((PP ((

(

_))))))

((_P (

(NP.PP.PP_ (NP ((PP (

(NP.PP.PP.ADJ-NPR (NP ((PP

(NP.PP.PP.CO_iP-U[;IT (NP

((PP

((_P

((PP

(I_P

((COMP ((ADV

6)

MUCH)))))

NIL 3)

((INTEGER NIL _)

(UNIT NIL 5))))

L (($ NIL I))))))))))

L 2))))))))

EP l_IL I)

NIL 2))))))))))

)
PREP NIL I)

NP NIL 2))))

(PP ((NP ((ADJ NIL I)

(NPR NIL 2))))))))))))

((DET

((POSTART

((COMP ((ADV NIL I)

(NP ((INTEGER NIL 2)

(UNIT NIL 3)))))

MUCH)))))))))))))))

r

C.43

; <WEBSER>RULES.WRITEUP;7 SUN 11-JUN-72 12:29_M PAGE I:_2

(NP.PP.Pp.pp (NP

((PP ((NP ((PP ((_p

(NP.PP.PP.PP.ADJ.NPR (NP

((PP

((PP

C(NP

))
(NP.PRO (NP ((PRO _IL I))))

(NP.QREL (NP ((S (QREL)

!))))

(NP.REL (NP ((S (RE%)

_))))

(S.ADJ (S ((VP ((ADJ NIL I))))))

(S.AND (S (AND (S NIL I))))

(S.AND.NPR (S ((NP (AND (NP ((NPR

(S.COMP (S

(IPP ((PHEP _IL I)

(NP NIL 2))))))))))))))

NIL I))))

(S.COMP-N

((vp ((NP ((DET ((POSTART ((COMP

((PP ((NP ((ADJ NIL I)

(NPR NIL 2))))))))))))))

MANY))
(S

((DET ((POSTART ((COMY

MANY))

(S.COMPL (S ((Vp

(S.COMPL-THAN (S

(S.COMPL.CBJ (S

)))

(ADV NIL 1)

(NP ((INTEGER

))))))))

(ADV NIL i)

(NP ((fNTEGER

)
(N NIL 3))))))))

((COMPL ((NP (NOM (S NIL I))))))))))

((VP ((COMPL ((NP (THAN (S NIL I))))))))))

((CO_PL ((NP (NOM

(S.DCL (S (DCL)))

(S.DCL-S (S (DCL

(s.IMP (s (z_;P)))
(S.IMP-S (s (ZMP

(S.NEG (S I_G)))

(S.NEG-S (S (_I_,3

(S.NP (S ((NP NIL

(S.NP.CO_;P

S.NPR (s

S.NPQ (s

S.NPU (S

S.NP-V (S

(S NIL I))))

(S NIL I))))

s.oBJ (s

(S NIL

I))))

CS (C_;P ((DET

I)))

[PO3TART

(NP

_,'P U

((NP

(V?

C',p

NIL 2)))))

I))))

((NPR NIL I)))))

(_P _IL I)))
(NP NIL I)))

NIL I)

((V NIL 2))))])

((_p ((Nu NZL 2))

i))))))

NIL 2)))))

(S ((vp ((Np NIL I)))))]))))))))

((COMP ((AUV

2;

_UCH)))))

_L))

C.44

; <WEHBER>RULES.WRITEUP;7 SUN 11-JUN-72 12:29_M PAGE I:_3

(S.OBJ.ADJ#2 (S ((VP ((NP
(S.OBJ.AND (S ((VP ((NP
(S.OBJ.COMP (S ((VP ((NP

(S.OBJ.NPR (S ((VP ((NP
(S.OBJ.NPR7 (S

(S.OBJ.O_ (S

(S,OBJ.PP (S

(S.OBJ.PP.PP

((ADJ NIL 2))))))))

(AND (NP NIL I))))))))

((DET ((POSTART ((COMP ((ADV

2)

MUCH)))))

I))))))

((NPR NIL I))))))))

((vp

((uP

((NR ((s ((NP (OP

((VP ((NP (OR (NP _IL I))

((VP ((NP ((PP ((PREP NIL

(NP NIL 2

(S ((VP ((NP ((PP ((NP ((

NIL))

(S.OBJ.PP.PP.PP (S

((VP

((NP

((PP

((UP ((PP

NIL I)))

NIL _)))

NIL 6)))

NIL 7))))))))))))))))

(S.OBJ.PP.PP.PP,PP

(NP ((NPR

(NP NIL 2)

(NP NIL 3)

(UP ((NPR

(NP NIL 5)

(NP ((NPR

(NP ((NPR

))))))

I)

))))))))))

PP ((PREP NIL 1)

(_P NIL 2))))))))))))))

((UP ((PP ((PREP NIL I)

(NP NIL 2)))))))))))))))

)))

(s
((vp

(CNP

((pP

((NP

((PP

((NP

((PP
((NP ((PP ((PREP NIL I)

(NP NIL 2))))))))))

))))))))))))

(S.0%J.REL (S ((vp ((NP ((S NIL I))))))))

(S.OR (S (OR (S :[IL _))))

(S.PP (S ((VP ((PP ((PREP NIL i)

(up NIL 2))))))))

(S.PP_I (S ((VP ((PP ((NP NIL I))))))))

(5.PP.AND (S ((VP ((PP ((PREP NIL 1)

(UP (AND (NP NIL 2)

(NP NIL 3))))))))))

(S.PP.AND.PP (S ((VP ((PP (AND (PP ((PREP NIL I)

(NP NIL 2))))))))))

r

C.45

; <WEBBER>RULES.WRITEUP;7 SUN 11-JUN-72 12:29_H PAGE I:_

(S.PP.PP (S ((VP ((PP ((NP ((PP ((PREP NIL I)
(Np NIL 2))))))))))))

(S.Q (S (Q (NP NIL)
(VP NIL))))

(S.Q-HODAL (S (Q (AUX ((MODAL NIL))))))
(S.Q-NEG (S (Q N_G (NP NIL)

(VP NIL))))

(S.Q-S (S (Q (S NIL I))))

(S.V (S ((VP ((V NIL I))))))

(S.VP (S ((VP NIL))))

)

(LISPXPRINT (QUOTE (V: RULELISTS)) T)

(RPAQQ RULFLISTS (TOPICRULES PR[:RULES DRU&ES

TEPMRULE HEADRUi_S DALL SSETRUL OWORDS SEH-NO

(DEFINEV

(TOPICRULES (TOPIC\NOT-NP

(PRE_ULES (S:AND

(DBULE5 (i_:_T_IBEF,

TOPIC\NOT-5 TOPIC\AUTMOB N

(OR _OPIC\TERM TOPICXTEB[_2

TOPIC\EMPHASIS TOPICXN

(AND TOPICXOR-S TO=it\

TOPIC\AND-NP TOPI

TOPICXNP,COMPL TO

TOPICXPP TO_IC\AU

TOPICXPP.COMPL TO

(OR TOPICXADJ.COM

(A_D TOPICXAD

S:OR S:DCL S:IMF S

NIL PR! NIL _R2 NI

S:NPQ NIL PRb))
NIL D:[_ASb NIL NP

D:ATLEA5_ D:EXACT

D:_VERY D:ALL-PL

D:EACH D:ORDINAL

D:ALLkONES D:THE-

NIL D:NOT-S_T))

NIL D:NOT-SET))

TCPiC\Np

TOPIC\ADJ-_ T

TOPIC\NOn TOPIC\N

TOPICkS.NP TO_IC\

TOPIC\V-_RANS TOp

TOPICkS.OBJ fCPIC

:WHQ S:QRE&-NEG N

L PR3 NIL PR_ NIL

:NPR D:SOnE D:NIL

LY D:HOR_THAN D:L

D:NEG D:THE-SG D:

D:CARD_NAL D:ANAP

SG2))

(SEYPUL (D:SETOF

(SET_UL? (r,:SETI

(NPRBULT (NP:NPR_)

(TERMRULE (ANY:T£_M)

_ETRUL? NPRRULE

-VERBS AVERAGEFLAG))

IL

TOPIC\ESP

R.S TCPiC\NR.NP

AND-S TOPICXOR-NP

CkADJ.NP

PIC\S.COMPL

THOR2

PIC\REL

P

O (OR

_OPICkADJ.SUPER

TOP_C\N)

R)

OPIC\ADJ-NPR)

R.S T_ PIC\NR.NP

V-INT_ANS

ICXV-TRANS2

\S.PP))))

IL S:QREL S:YES/NO

PR5 NIL S:NPU

D:HO_MANI

ESSTHAN D:ATMOST

WHQ-SG D:WHQ-PL

HORA D:SEMI-AN_PHOR

C.46

; <WEBBER>RULES.WRITEUP;7 SUN 11-JUN-72 12:297M PAGE I:_5

(HEADRULES C(

(

C

(

(

(

(

C

(

(

(

(

(

(

(

C

(

(

C

(

(

(

(

s (_Pu))
QUOTE NPU))

s C_:PQ))
QUOTE NPQ))

S (AND))

QUOTE AND))

s (oR))

QUOTE OR))

5 (Q (S NIL)))

QUOTE 0))

S (Q (VP NIL i)))

HEAD I))

S (DCL (S NIL)))

QUOTE DCL))

S (DCL (VP NIL I)))

HEAD 1))

s (IMP (s NIL)))

QUOTE IMP))

S (NEG (S NIL)))

OUOTE NEG))

S (NEG (VP NIL I)))

HEAD I))

S ((VP NIL I)))

HEAD I))

Vp ((VP NIL)))

HEAD I))

vp ((v _IL I)))
TERM I))

NP ((NPR NIL _)))

TEPM I))

NPR NIL I)

TERM I))

NP ((N NIL I)))

TERM I))

N _IL 1)

TERM I)_

NP (OR))
QUOTE OR))

QUOTE AND))

ADJ NIL I)

TERM I))

PREP NIL I)

TERM I))

NP (NOM (S NIL I)))

HEAD I))

V NIL I)

TERM 1))

(NP ((PRO NIL)))

TERM I))

C.47

; <WEBBER>RULES.WRITEUP;7 SUN 11-JUN-72 12:29PM PAGE 1:46

(

(

(

(

(DALL (D:ALL)

(SSETRUL (D:SS

(QWORDS (HOWMA

(SEM-NOUNS (AG

(SEI_-VER6S (CO

CAVERAGEFLAG N

)

STOP

INTEGER NIL)

TERM I))
U_TT NIL I)

TERM I))

PRO NIL I)

TER|I I))

Np (N_G))

OUOTE NES))))

ET NIL

NY _HIC

E ANALY

OLD))
NCERH C

IL)

D:NOT-SET))

HQ WHEN _HERE WHY HOW WHQ))

SIS AVERAGE BIG CONCENTRATION DOCUMENT DUST

O_TAIN DISCOVER GIVE LiKE PERTAIN REFER))

LITTLE

C.48

APPENDIX D: DOCUMENTATION OF FUNCTIONS

This appendix is designed to give a detailed

description of the complete set of functions involved in

the parser, interpreter, and grammar of the system. It

describes each functionp Places It the overall framework

of the system, explains how it _nteracts with other

functions, and describes the functions of various

arguments and temporary storage locations. Together with

the listings of %he programsp grammarw and semantic

rules, it provides a thorough documentation of the LSNLIS

system.

Each function is given wlth the names of its

arguments in the form of a _yp_cal call _o the function

(e.g. (GETR REG WHERE) is a call to _ne function GETB

with arguments REG and WHERE, Those functions which take

an indefinite number of argumen%s bound as a list to a

single atom are listed aS a dotted pair of the function

and the argument llst (e.g. (BUILD ARGS) represents a
call to the function BUILD with t_e CDR of the calling

form bound to ARGS).

D.1

Page 2

I, EXECUTIVE AND PARSING FUNCTIONS

(ABORT)

ABORT is a function for _erm_nating fruitless paths

in a parsing, Zt is used as an action on arcs of the

grammar (usually embedded in a COND) to abort the arc if

some condition is not satisfied,

(ACT ACTIONS NONTERMFLAG)

ACT is the function called bY STEP to execute _he

actions on the arcs of the grammar. ACTIONS is the llst

of actions to be performed, and normally i_ is terminated

by a terminating action (JUMP, TO, or ABORT), However,

there are cases {e.q. on a JUMP arc} when ACT is called

with a list of actions Wnlch _s not so terminated, In

this _ase, the argument NONTERMFLAG _s set to permit a

normal return from ACT, If NONTERMFLAG is not set and a

nonterminated llst of actions is encountered, then there

is a bug in the grammar and ACT prints an error message.

Terminating actlons are Indicated by returning a

value .LO, .LI, .L2, ,END, ,HELP, indicating a location

in the STEP routine to Which control is to resume.

Terminal acts other than ABORT also have the

responsiblity of setting up the configuration on Which
STEP is to operate.

(ADDL REG EXPRESSION)

ADDL is a function for use on arcs of the grammar

for adding to the contents of a reglster, It adds the

results of evaluating EXPRZSSION to the le_ of the

contents of the reglster REG (which must be a list).

(ADDLEX STRINGPOS LEXPAIR)

ADDLEX is a function to add lex_cal information to a

table LEXTABLE which keeps a record of the results of

calls to LEXICo STRINGPOS _s a pointer into the input

string where the current word begins, and LEXpAIR is a

pair consisting of the word found and a pointer into the

input string immedlate]7 following the word. In the

current system these string pointers are merely the LISP

pointers into the list of words which make up the

sentence and the dotted palr consisting of the word and

the rest of the sentence is the same pointer as the

pointer to the beginning of the word. However, the

function ADDLEX was written to permit more flexible use
of STRINGPOS.

D.2

Page 3

(ADDR BEG EXPRESSION)

ADDR is like ADDL except that It adds information to

the right end of the list in reqlster REG.

(ADJVERB)

ADJVERB tests whether the verb was produced

predicate adsective replacing a copula verb,

case, the verb has the form (V ADJ ---), and

tests for the presence of ADJ,

from a

In this

ADJVERB

(ALT.STACK ALT)

This function extracts the stack from an alternative

ALT. It is used in several places by other functions.

It is one of a large class of such functions which have

been named to aid the readibil_tY of the programs. All

functions containing a period in their names in this

fashion are functions for extracting information from a

list that is functioning as a special "data type". The

portion of the name before the period names the data type

to which the function applies, ana the portion of the

name which follows the Period names the "field" of the

data type whose value is being extracted, Thus an

expression of the form (ALT.STACK X) embedded in a piece

of co_e tells the reader both %hat X is an ALT (the data

type for alternatives in the grammar) and that the value

of the expression will be the stack whlch was saved in

that alternative.

(ALT.STATE ALT)

This function is similar to ALT.STACK, but

the state of the alternative,

extracts

CALT.STRING ALT)

This function extracts the string from

alternative.

an

(ALT.WEIGHT ALT)

Extracts the weight aSsociated with an alternative,

(The weight of an alternative is a measure of how

"likely" the alternative is.)

(ALTARC.ACONFIG KLT)

ALTARC.ACONFIG is a

ACONFIG associated with

entry for that alternative.

function for extracting the

an ALTARC alternative from the

D.3

Page .

(ALTARC°ARCS ALT)

This function extracts the

ALTARC alternative,

llst of arcs from an

(ALTARC,TRAIL ALT)

This function extracts a peinter to the TRAIL

from an ALTARC alternative ALT,

entry

(ALTARCGEN)

This function is called In a number of places in the

STEP function to store ALTARC alternatives, If there are

arcs which are as yet untried (and _f LEXMODE is not set)

then an alternative is stored whlch will enable those

arcs to be fled later if the current path is not

successful. (LEXMODE is set durlng the processing of

certain parts of reduced conjunctions, when the parser is

constrained to follow the trail left by a previous

parsing of the same string, and ALTARC alternatives are

not generated.)

(ALTCONJGEN PPATM)

ALTCONJGEN generates ALTCONJ alternatives for

restartina a previous configuration of the parse on the

strinu which follows a conjunction (It is called by

SYSCONJ as part of the system facility for handling

reduced conjunctions). PPATH is the partial path entry

from some previous configuration which saves the

necessary information for restarting.

(ALTLOC ALTS STATE STACK)

ALTLOC is a function which locates alternatives for

the selective modifier placement facility, It looks for

the alternative which is in a spec}fJed state and has a

specified stack pointer.

(ARCPICK LOCX LOCY)

ARCPICK iS a function used bY the selective modifier

placement facility to select a particular arc out of a

list of arcs and replace it by an equivalent arc which

can only be followed if a flag *SPOP is not on. This

enables the selectlve modifier placement facility to take

a particular arc out of a llst of arcs and replace it

with an eauivalent arc that can only be taken if in the

context of another SPOP.

(ASSIST)

D.4

Page 5

ASSIST is a function called bY PARSER when no

parsings have been found and no more alternatives remain

to be tried. When the flag ASSISTFLAG is not set, it has

no effect. Otherwise, it locates the blocked

configuration which got the farthest into the input

strina before blocking, and executes a call to HELPER to

allow the user to investigate. (It identifles itsel£

with the typed message "ASSISTANCE:"). This function is

used only for system debugging, and ASSISTFLAG would

normally be off for users. If the call to HELPER is

terminated with RPT instead of OK, ASSIST will attempt to

resume the parsing from that poin£.

(BACKUP)

This function is designed for use in an ASSIST break

(i,e. a call to HELPER from ASSIST). It allows the user

to back up the configuration along the path leading to

it. Thus the user can back up along the computation of

the blocked co,figuration (and by termlnating the call to

HELPER with RPT he can restart the computation from the

configuration to which he has backed up). Each call to

BACKUP backs uP the configuration one step and prints out

the state of the configuration after the backup,

(BUILD , ARGS)

BUILD is a functlon which can be used on the arcs ot

the grammar to build sentence structure, It takes an

indefinite number of arguments, the first of Which is the

name of a structure fragment. The remaining arguments of

BUILD (if any) are items to be substituted for specially

marked leaves in the structure fragment, The structure

fragment is processed from left to right, and when a node

+ is encountered the next item in the remaining argument

list is taken as the name of a register whose value is to

be inserted for the symbol +, when a node # is

encountered, the next item is taken as a form to be

evaluated, and the resulting value is substituted for the

symbol #. In addition, when the symbol * is encountered,

the current value being scanned bY the pointer • is

copied into the structure, and where subexpressions o_

the form (@ XI X2..Xn) are encountered, a single list is

generated which is the result of appending XI, X2,
Xn (which must be lists) into a single llst. BUILDI and

BUILD2 are the functions that do most of the work.

(BUILD1 X)

See BUILD.

(BUILD2 X)

D.5

Page 6

See BUILD,

(BUILDO . ARGS)

BUILDQ is llke BUILD except that Its first argument

is taken literally as the structure fragment while

BUILD's first argument is evaluated.

(CAT CATEGORY)

CAT is a function for use in condltlons on arcs in

the grammar for testing the syntactic categories of the

current word being scanned. CATEGORY can be either a

sinqle syntactic category name or a list of cateqory

names. CAT is true if the current word can be in the

indicated categ6ry or one of the _nd_cated categories,

(CATCHECK CATEGORY FLAG)

CATCMECK is the function used by CAT and by STEP for

accessing the dictionary to determine whether the current

word can be a member of a particular category. It

returns a list (called a form.features list) Whose first

member is the standard (uninflected or "root") form of

the word as used in this category and whose remaining

elements are inflectional features assoclated with this

word used as this category. In addition, if there are

other such lists (corresponding to different senses of

the word) for the same syntactic category and the flag

FLAG is set, then an ALTCAT alternative is generated to

enable that alternative to be pursued later, This flag

is set when STEP calls CATCHECK for a CAT arc, but is not

set for other uses,

(CCHECK TEMPLATE MLIST)

CCHECK is the function which checks semantic

conditions in templates during the matching of semantic

rules by the interpreter. TZMPLATE _s the template in

question, and MLIST is a LIST of possible matches for the

template which are to be screened bY CCHECK. Each

element of MLIST is an ALIST whoSe elements are dotted

pairs of node numbers in the template and their

corresponding matches in the tree,

(CHANGEWORD , ARGS)

CHANGEWORD is a function for Use in a REQUESTDEF

break when the system encounters an unknowwn word. It

takes an indefi,ite number of arguments ARGS, and it

patches this list into the input strlng in place of the

current word, If ARGS is NIL, then the current word is

deleted. It performs the necessary side effects to

enable the parsinq to continue as if the resulting string

D.6

Page I

were the one originally typed.

(CHECKF CATEGORY FEAT)

CHECKF is a function Which checks the current word

(*) to see if it has feature FEAT under syntactic

category CATEGORY in the dictionary. FEAT may be a llst

of features instead of a single feature, In which case

CHECKF is true if • has any of the indicated features.

The dictionary checking is actually performed bY CHECKFI.

CHECKF_ CATEGORY FEAT)

See CHECKF.

(CHOOSEALT N)

CHOOSEALT is a function for debugging grammars which

enables the user to specify the alternatlve which will be

tried next when the user types GO(PARSE) to TALKER. The

number N refers to the number which Is printed out with

the alternative when running with TRACEFLAG set to T.

(COMPARATIVE ARGS)

COMPARATIVE tests whether the verb was produced from

a comparative predicate adjective (e.g. JOHN WAS

BIGGER...) replacing a copula verb. In this case, the

verb has the form (V ADJ ,.. COMPARATIVE), and

COMPARATIVE tests for the presence of the word

COMPARATIVE.

(COMPFORM ENDING)

COMPFORM is a function to check whether the given

ending is the indicated ending form the comparative form

of the adjective *. Tr is used in MORPHTABLE for the

morphological analysis of comparatlve adDectives.

(CONJOIN)

This function is one of three primary functions in

the SYSCONJ facilitY. (The functlons are CONJOIN,

PoPCONJ, and SYSCONJ.) It is never called explicitly from

any Dart of the code, but a call to CONJOIN is placed on

the stack by SYSCONJ alone with the current status of the

confiuuration which is being suspended in order to

restart an earlier configuration on the string which

follows the conjunction. When the restarted

confiauration has completed the construction which it was

buildlnq, control will pop to thJs special stack entry,

and the function CONJOIN will be executed to resume the

S_SD_n_d configuration on some tail of the string

D.7

Page 8

consumed bY the restarted configuration. CONJOIN

enumerates all possible such tails, and generates

alternatives for each of them. It also gathers up

multiple consuncts into a single level conjunction (i.e.

(AND A B C) instead of (AND A (AND B C))--this is done by

the first COND in the program) and It uses a heuristic

strategy for selecting the "preferred" tail to try first,

The strategy is that if the w

preceded the conjunction word (i.e

(CAAR TEMP)))) is repeated so

consumed bY the restarted confi

preferred Place to resume the su

immediately after this word. The

alternative is performed bY the Ioo

ord which immediately

. (CAR (PATH.STRING

mewhere in the string

quratlon, then the

spended alternative is

location of such an

p at LI,

(CONJSCOPE SCOPEWORD CONJ)

This func

conjunction a

CONJSCOPE is t

"and" or when

is used in CON

confiaurations

tion is a predicate which is true of a

nd its left-hand scope indicator, That is,

rue when SCOPEWORD is "both" and CONJ is

SCOPEWORD is "either" and CONJ is ,or". It

JSTARTS for selecting preferred restart

(CONJSTARTS PPATH STATES)

This function computes

SYSCONJ. It returns a 1

configurations ordered wlth

that when they are placed

given, the most likely one w

CONJSTARTS operates by ba

(PPATH) leading to the

conjunction was encountere

restart configurations. It

at least one word in the s

is used to remember whether

It backs up along the partia

is exhausted and then goes u

starts backing across tha

however, from backing up th

SYSCONJ entry. When such a

if the stack is emptied, the

that all possible configu

will not generate a testa

reached as a result of

duplicate a configuration

restarting the conflgurati

JUMP arc. Also, if CONJSTAR

as its second argument

configurations

otherwise, any

in those states

state is possible.

restar

ist of

the mos

on the

ill be

cking

confJ

d and

is forc

trlnq,

this co

1 path

p the

t leve

t configurations for

the possible restart

t ltkely one last, so

ALTS list in the order

the most recent ALT,

up the partial path

quration where the

picking up possible

ed to back up across

and the flag FIRSTFLAG

nditon has been met.

at each level until it

stack one level and

i. It is forbidden,

e stack beyond a previous

conditlon is encounttered, or

n QUITFLAG is set to indicate

ratlons have been found. It

rt conf_guration Which was

a JUMP arc, since that would

which can be reached by

on at the beginning of that

TS Is given a list of states

STATES, then only restart

will be considered;

D.8

Page 9

CONJSTARTS uses several heurlst_cs to locate
preferred restart configurations. _n the course o_
operation it selects up to three preferred alternatives
(PREFERREDO,P_EFE_REDI and PREFERRED2, favored in that

order), PREFERRED@ is that alternative, if any, which is

indicated by a scopeword fop the current conjunction

("both" for "and" or "either" for "or"). PREFERBEDI is

the alternative that is indlca_ed bY a repeated word--

i.e. when the word which Immediately follows the

conjunction occurs in the preceding string. PREFERRED2

is the alternativee which is the beq{nnlnq of the current

constituent being built.

(CONSTITUENTS NODE)

CONSTITUENTS is the function whlch when aPPlied to a

node of a parse tree Yields a llst of the immediate

constituents (daughters) of that node. For the tree

notation currently in use, this Js simply the CDR of the

node.

(CONTRACTP WORD)

CONTRACTP is a function for morphological analysis

of words which appear to be contract numbers. It is only

a crude approximation to an actual recognizer of contract

numbers. It is only called for words which are not

already in the dictlonary, and hence will not cause any

conflicts with words which are entered in the dictionary

that might meet its conditions but not be contract

numbers. The conditions are that the word contains at

least one hyphen, one numerical digit, one alphabetic

letter, and no other punctuation marks,

(CTYPE ENDING)

CTYPE is a predicate Used in MORPHTABLE entries for

determining whether the _QDJ_iQn _Yg_ of the current

word is the same as that given as the argument ENDING.

(DDEF . ARGS)

DDEF is a function for adding entries to the

dictionary. It is not called explicitly by any

functions, but is intended for use by a user or systems

programmer at the executive level or in a break. ARG5

should be a llst whose first element is the Word to be

defined, and whose remaining elements in pairs are

property names and proPertY values to be added to the

dictionary entry for the Word, It alSo adds the word to

the qloba] list DICTIONARY.

D.9

Page 1_

(DETBUILD)

DETBUILD is a function which is called bY arcs of

the grammar t_ b_ild the determiner structure of a noun

phrase, It combines the contents of the registers

POSTART and DET with the approprlate structure,

(DETOUR)

DETOUR is the function which chooses the next

alternative to be trled when the parser encounters a dead

end OE is instructed to find another parsing. It

searches for the most recent alternative with the lowest

weight,

(DICT? WORD)

DICT? is a function for examing the dictionary entry

for a word WORD. It is not called by any function, but

is intended for use by a user or systems programmer,

(DICTCHECK LEX CKTEGORY)

This function checks the dictionary entry for the

word LEX to see if it can be analyzed as a member of the

syntactic categOrY CATEGORY, _t returns a list each

member of which is a list consisting of a standard (root)

form of the word and the inflectional features associated

with that word as an inflected form of the indicated

root. This is _he function which decodes the various

types of abbreviated dictionary formats into the standard

list of form-features lists.

(DICTFETCH WORD)

DICTFETCH is a function which retrieves the

dictionary entry for a word from the external dictionary

file. The name of the external file is assumed to be on

a global variable DICTFILE. DICTFETCH does a binary

search on the file for the indicated word after first

checking to verify that it has not already tried to find

this word on the file before. In addition to calling in

the dictionary entry for the word, it also calls itself

recursively to obtain the entrles for certain related

words (see RELATEDWORDS),

(ZOU N . ARGS)

EQU is a predicate used _n the conditions in

semantic rules. It verifies that the terminal string

dominated bY the node numbered N is equal to the string

ARGS.

D.IO

Page 11

(EVALLOC FORM)

EVALLOC is a function wnlch Is used by several of

the functions which are used by the grammar, FORM is an

argument list for some function, and EVALLOC decides

whether the argument is the name of a register (in which

case it applies GETR to get the contents of a register)

or a form for EVAL in which case it calls EVAL. It also

handles the evaluatlon of the special current constituent

pointer ,, and fills the current constituent in as a

default for certain cases Where an argument is missing.

(F.NODE FRAGMENT)

F.NODE is a function Used in the tree match facility

to obtain the node name of a node in a partial tree

fragment of a template.

(F.REF FRAGMENT)

F.REF is a function to access the reference number

if any associated with a node In a partlal tree fragment

of a template.

fF.SONS FRAGMENT)

F.SONS is a function for accessing the list

constituents of a node in a partial tree fragment,

of

(FILEMATCH WORD FILE POS)

FILEMATCH is a function used by D_CTFETCH to compare

a given word wlth the word at the specified position POS

on the external FILE. It returns one of the atoms

GREATER, LESS, or EQUAL.

(FRONTED? SONS)

FRONTED? is used when the parser is doing

simultaneous interpretation. It runs thrOUgh the SONS of

a node, looking for Prepositional phrases which were

preposed in surface structure, and returns a list of

those that were. This list is used by SORTREFS in

deciding guantifler ordering, since quantifiers in
fronted prepositional phrases retain their surface

structure scope.

(GETF FEATURE)

GETF is a function which obtains the value of a

feature FEATURE for the current Word on a CAT arc. AS a

side effect of the call to CATCHECK on a CAT arc, the

atom FEATURES is bound to the list of inflectional

D.II

Page 12

features associated with the current

GETF accesses features from this l_st.

(GETLEX STRINGPOS)

inflected word.

GETLEX is a function

constructed by LEXIC,

for accessing the LEXTABLE

(GETR REG WHERE)

GETR is a function for getting the contents of a

register REG. During the parsing, the contents of the

registers are kept On a list BEGS of alternating register

names and register valueS. GETR searches this list for

the register REG. Howevert there are times when one

wants to qet the contents of a register at some higher

level on the stack, The argument WHERE allows for the

specification of the stack locat1_n, If WHERE is T, then

the top level is used. If it Is "NEAREST" then GETR

searches the current leveJ and then successively looks up

the stack until it finds an instance of REG, If WHERE is

a number, then GETR 3ooks at that numerical stack

position. Otherwise WHERE can be a condition on the

STATE, REGS, and ACTIONS Of a stack entry which

determines the level of the stack to use.

(GETROOT WORD CATEGORY)

GETROOT is a function for obtaining the root form of

the word WORD viewed as a member of category CATEGORY.

Note: if there are several possible roots, only the first

one in the dictionary is found, e.g. (GETROOT (QUOTE

SAW) V) will return SAW or SEE depending on which is

first in the dictionary entry under the category V.

(HOLD FORM FEATURES)

HOLD is a function for use on arcs of the grammar

which adds items which have been found in the sentence in

some position other than their legitimate deep structure

position to a special HOLD l_st, Entries on the HOLD

list may later be recognized by VIR arcs in the grammar

as if they had been found at the point in the sentence

where the VIR arc is applied. The values of FORM and

FEATURES are saved on the llst so that when the VIR arc

is applied, • will be bound to FORM and FEATURES will be

bound to the saved value of FEATURES.

(HOLDSCAN HLIST CATEGORY TST)

This function scans the llst HLIST (which will be

the HOLD list) for elements of the type CATEGORY which

meet the condition TST. It is used for prcessing VIR

D.12

Page 13

arcs in the function STEP.

(HYPHENADJWORD)

HYPENADJis a predicate whlch Js true of words which

look like hyphenated adjectives. It is a crude

approximation of a function to recognlze hyphenated

strinms of English words. MYPHENADJ is true if WoRD

contains at least o,e hyphenp at least one alphabetic

character, no numeric digits, and no other punctuation

marks. It is used in the morphological analysis of

adjectives.

_JU_P S)

JUMP is a function which can be used on arcs of the

grammar to indicate transition to a new state without

advancing the input string, It does this bY setting up

the new configuration CONFIG and returning *L1 to

indicate that the function STEP is to continue at

location LI.

(LEXALIZE STRING)

LEXALIZE is a function which obtains the llst of

(lex . strinmpos) pairs which can be obtained from a

given string by the compression of compound expressions

into single lex's and by lexical substitutions.

(LEXIC ALTS)

LEXIC is the function whose job is to determine the

next word in the inPUt strlng. It is called bY PARSER

whenever the input string is to be moved. LEXIC provides

for the expansion of contractions, the substitution of

some synonyms, the compaction of compound phrases which

are to he treated as single words, and the requesting

from the user of definitions for unknown Words.

The next word in the Sentence Is not always uniquely

determined, and for this reason, LEXIC is designed to

enumerate the alternative Possible "neXt words", It does

this as follows: When LEXIC is called, it chooses one o_

the possible next words and sets up the value LEX to hold

it (and ad3usts STRING accordingly so that LEX is (CAR

STRING). If there are other possible "next words", then

LEXIC generates alternatives (ALTCOMP's or ALTSUB'S) for

these and returns a list of them as _ts value. If there

is only one possible choice for LEX, then LEXIC returns

NIL. The portion of PARSER which calls LEXIC takes any

alternatives returned by LEXIC and generates an ALTLEX

alternative on the parser's ALTS l_st. In restarting one

Of these ALTLEX's PARSER will call LEXIC with a list o_

D.13

Page 1.

alternatives ALTS, and LEX_C will generate the

appropriate choice for another "next word N, Thus the
first COND in L_XIC tests for whether LEXIC has been

called in this mode to enumerate another alternative, and

if so branches to location ALT,

Normally, dictionary entr_es are stored on the

property lists of atoms which are provided bY the LISP

system. However, numbers and the special atom NIL are

not permitted to have property liStS in LISp nor can

pieces of llst structure have property lists. However,

we would like to be able to recognize such constructions

when they occur in input sentences, and therefore LEXIC

tests for these special types of LEX, If the input

"word. is one of these types, then the functions of the

morpholoqical analyzer which are stored on MORPHTESTS can

recognize them, and LEXIC will consider them known

possible next words. In addltJon, for pieces of last

structure, LEXZC wall consider the possibility that the

parentheses in the input were superfluous and will

generate an ALTCOMP alternative in which the parentheses

have been removed. This altePnat%ve will not be tried,

however, unless there is no other way to parse the

sentence.

If the input word is not one of the special forms

discussed above, then LEXIC checks to see if the word has

a dictionary entry (PLIST determines whether the Property

list is empty) and, if not, Whether the word can be

derived bY reaular inflection from a Known word (the

function MORPH performs this type of morphological

analysis). If the word turns out to be _nown for any of

these reasons, then the routlne branches to location

SUBSTITUTE? to consider possible substitutions or

compound phrases.

If the "word" is not Known, one possible reason is

that it contains some Punctuation marks that were not

separated from it by a space or that it has been run

together with another word with only punctuation marks

separating them. The next t_Inq which LEXIC does is to

look for such punctuation by unpacking the characters of

the word and processing them to look for punctuation.

when a word is known to the system by virtue of

having a dictionary entry, then LEXIC looks to see

whether the dictionary specifies a substitution to be

performed. If so, it will find on the property list of

LEX the property SUBSTITUTE followed bY a llst of

alternative substitutions. Each substltutlon is a list

(possibly NULL) of words to be inserted in place of the

current word in the input string. If there is more than

one substltutio,, then the first one is taken and an

D.14

Page 15

ALTSUB alternative Is generated for the rest. Following

the testing for substitutions, LEXIC checks for the

presence in the dictionary of a COMPOUNDS entry which

indicates that LEX can begin a compound phrase. The

value of the property COMPOUNDS is a search tree for the

possible compounds that can begin wltn LEX, and LEXIC

compares this tree with the sequence of words following

[EX in the input string. If it f_nds a match, it chooses

the longest one and generates ALTCOMP alternatives for

any shorter ones,

(LEXPAIRS STRINGPOS)

LEXPAIRS is the function called bY LEXIC to produce

the list of (lex . stringpos) pairs which can be found

at the indicated position STR_NGPOS. Each pair indicates

a poSsible lex together with the stringpos which

immediately follows it.

(LIFTR REG FORM WHERE)

LIFTR is a function for settlng reglster contents at

higher levels on the stack, REG is the name of the

register, FORM is the va3ue to which it is to be set, and

WHERE is a specification of the level on the stack at

which the register is to be set. WHERE permits the same

options for LIFTR that it does for GETR with the

esception of "NEAREST".

(LONGBLOCK)

LONGBLOCK is a function which _s called by ASSIST to

determine the blocked configuration whlch got the

farthest through the Input strlng when a sentence is

unparsable. This ks a likely site for the error which

caused the sentence not to parse, especially if the error

has to do with the dictionary entry for a word.

(MARKER X Y)

MARKER is a function which checks whether the word X

has the semantic marker Y.

(MEMBSTACK PTR STACK)

MEMBSTAC_ Is a function used bY PARSER as part of

the well-formed substring fac_l_ty to test whether a

qiven alternative could possibly add to a given position

in the string. STACK is the stack of an alternat_e from

the ALTS list and pTR is a polnter to a list of

well-formed substrin_s. MEMBSTACK returns T if STACK

contains the pointer £n its WFST3 entry at some level.

D.15

Page 16

(MODAL)

MODAL is a predicate for use on the arcs of the

grammar and is true if the current value of • is a modal

verb.

(MODESET MODE)

MODESET is a function for %nltlallzing some standard

mode settings. MODE T causes all parslngs to be obtained

and interpreted and executed. MODE I does parsing onlyw

MODE 2 does parsing and semantic interpretation, and MODE

3 does parsing, semantic interpretatlon, and execution.

(HORPH LEX CATEGORY CHODE)

MORPH is the function which performs morphological

analysis for rugularly inflected words. LEX is the word

being MORPH'ed. If CATEGORY %s a single category namep

then the analysis is performed for that category only;

but if CATEGORY is NIL, then the analysis is performed

for all possible categoreis. HORPH makes Use of two

tables -- MORPHTESTS and MORPHTABLE, The first contains

arbitrary LISP tests for particular types of Words, while

the second contains _nflectional endings.

HORPHTESTS is used both in HORPH and in CATCHECK; it

consists of a llst of entries for different syntactic

categories, with each entry consisting of the name of the

category and a series of two.element lists which specify

a predicate to be tested and a form to be returned as the

form-fetures list if the predicate if true, A simple

MORPHTESTS entry would be (INTEGER ((NUMBERP ,) (LIST

*))), indicating that any wrd • whlcn passes the test

(NUMBER ,) will be considered as an instance of the

syntactic cateqory INTEGER, wlth a standard (root) form

identical to itself (*) and w_trL no inflectional

features. CMODE is a flag which can be set to skip the

HORPHTESTS analysis.

MORPHTABLE indicates the possible inflectional

endinqs for regularly inflected words, and the procedures

for obtaining the uaderlYing root forms for inflected

wrds. MORPHTABSE also contains entries for several

different syntactic categories, Each entry specifies a

syntactic category and then a sequence of entries of the

form:

(E- E+ CATEGORY CONDITION FEATURES,)

where E- is an ending to remove from the end of the word

(if it is not there, then the rule doesn't apply), E÷ is

an ending to add to the stem that results from

D.16

Page 17

subtracting E., CATEGORY is the syntactic category of the

root which is to be checked, CONDITION is a condition

whch must be true of the root when viewed as cateqory

CATEGORY; and FEATURES (there may be any number of them)

are the inflectional features wh_chare to be associated

with the work if the condition is satisfied. The

CONDITION in the rules is used to verify that the

tentative root is indeed in the class of wrds which

underuo the regular inflection represented by the rule.

For example, the entry (N ((S) NIL N (PLURAL -S) (NUMBER

PL))) says that if we re look_ng for a noun (N) and if

the wrd ends in $, then we remove the $ from the end, add

nothing (NIL) and look at the resulting wrd as a noun (N)

to test the condition (PLURAL -S) (which tests the

dictionary entry for the word for the property N with

value -S) to see if the word undergoes this type of

inflection. If so, then the _nflectonal features

associated with the word consist of the single feature

(NUMBER PL).

If a dictionary entry is computed for a word by

means of morphological analysis, then it is added to the

property list for that word for the duration of the

console session with the system, Thus, the morphological

analysis described w111 be done only once for each word

for which it is required.

(MORPHTABCHECK TABLE)

MORPHTABCMECK is the function which tests the

entries in the MORPHTABLE for MORPH. It returns a list

of appropriate form.features llsts for the dictionary

entry if a line of the table _s successful and NIL

otherwise.

(NORPHTSTCHECK TAB)

MORPHTSTCHECK is the function whicn checks entries

in the MORPHTESTS table for MORPH. It also returns a

list of form-feature lists.

(NEGADV WCRD)

NEGADV is a function which tests for negative

adverbs such as "hardly", etc, wnlch cause subject/verb

inversion when the beain a sentence.

(NEXTWRD WRDS)

NEXTWRD is a function which is used on arcs of the

grammar and returns the next word in the input string.

D.17

Page 18

(NPBUILD)

NPBUILD is the functiOn which builds the syntactic

tree structure for a noun Phrase. It Is used on POP arcs

in the qrammar,

(NPCHECK NODE TERMINALS)

NPCHECK is a function used _n PNCHECK for testing

constituents of a noun phrase node, It uses the free

variable NP which is bound to a noun phrase node bY

pHCHECK and looks for a constlt_ent of the noun phrase of

type NODE. It checks whether the immediate constituent

of this NODE is a member of the llst TERMINALS,

(NPREP ARGS)

_PREP tests whether a given preposition Is usually

associated with the head noun of a noun phrase, ARGS may

be a preposition or a prepositional phrase_ in which case

its preposition is extracted and tested. This is a

primitive foray into correct modlfler placement, but it

works in more cases than not.

(NULLR REG)

NULLR is a predicate for use _n condltions in the

arcs of the _rammar for testln_ whether the register REG

is empty.

(ORFLAG X)

ORFLAG is a function which can set a special mode

that tells the system to interpret all "and" conjunctions

as if they were ,or" conjunctions, ThlS mode can be used

bY some users who habitually say "and" when they mean

"or" in document requests. When X is T the special mode

is set, and when X is NIL it is reset.

(PARSELIST SENTLIST)

PARSELIST iS a function for debugging a system. It

takes sentences successively from the ilst SENTLIST and

processes them as queries.

(PARSER STRING NODE ALTS)

PARSER is the controllinq routine o5 the parsing

component. STRING is the sentence to be parsed and MODE

is a variable whlch governs the mode in which the Parsing

is to proceed. (kLL causes all parslngs to be foundp

SPLIT causes all Pars_ngs to be followed in parallel, and

non-null values in general cause automatic selecton of a

D.18

Page 19

new alternative number, whenever a blocked confiquratLon

is encountered.) _LTS is a lis_ of alternatives which is

NIL unless PARSZB is being called to continue looking for

parsings, in which case it will be llst of alternatives

generated bY a prevlous call to PARSER, PARSER returns a

list whose first element is a llst of parsings found, and

whose second element is a llst of alternatives which it

did not try I% is this llst of alternatives which can be

used to continue looking for additional parslngs if the

first one is found not be satisfactory,

PARSER manages a llst of actlve configurations

(ACFS) which its calls %he function STEP to advance. A

confiquration consists of a complete record of a state of

the machine .- i.e., a list of the state, stack,

registers, contents of the HOLD llst, and a Path entry

which records the history of how the cofiguratlon was

reached from the initial conflgurat_on,

PARSER runs in two modes dependlng on the setting of

a flag LEXMODE. In the normal mode, LEXMODE is NIL and

the parser proceeds by calling LEXIC to determine the

next word in the string. LEXMODE is set when the parser

is operating on a reduced conjunction during the part of

the processing when the suspended conflquratlon for the

first conjunct is belng resumed on a tall of the string

consumed by the second conjunct (See S¥SCONJ and

CONJOIN). At this time, the parser follows the trail

(TRAIL) left bY the previous parsing of this substring,

and the normal lexlcal analysis is bypassed. This is due

to the fact that the two components of the conjunction

are required to analyze the shared substring in the same

way.

If after calling LEXIC, the current word LEX is

still an unknown word, then the configuration is added to

a list of blocked configurations and the parsing is

aborted under %he assumption that no other alternatives

will be able to parse beyond %he unknown word in the

sentence. When LEX is a Known word, however, PARSER

calls the function STEP to advance the active

configurations and produce a new list of active

configurations at the next posltion of the input string,

it advances the input strlna to the next position and

repeats. If at any time there are no new active

confiGuratiOnS, then depending on tile setting of the flag

MODE (which is normally set to the value of the global

flag PMODE) it either goes into a break at location HELP,

or it selects an alternative to be tried by calling the

function DETOUR at location ALT. If there are no more

alternatives, but there have been some complete parsings

found (if so they are stored on VALUES bY the function

POP which is executed in interpreting the POP arcs in the

D.19

Page 20

grammar), then PARSER returns those parsinqs, If this

call to parser was not itself an attempt to find

additional parsings (in whlcn case ALTFLAG would be set)p

then the failure to find any parsings of the sentence

will cause a call to ASSIST. This _s the function which

would eventUallY contain facilities for making helpful

diagnostic comments to the user as to the likely cause of

the error, and perhaps even correct them and continue.

At the moment it mere3y goes _nto a break (if the flag

AHELP is set) at the blocked co,flguration which got the

farthest into the string before blocking.

The various locations ALTCONJ, ALTLEX, and ALTARC

know how to restart their corresponding types of

alternatives, which have been found on the ALTS list by

DETOUP.

(PATH.ARC PATH)

PATH.ARC is a function which extracts the

followed from a path entry,

last arc

(PATH.STRING PATH)

PATH.STRING is a function which extracts the current

string position from a path entry,

(PATH.VAL PATH)

PATH.VAL is a function which extracts the VAL (i.e,

the word or construct "consumed" by the last transition)

from a path entry.

(PLOG N FILE)

PLOG is a functlon which prints out a record of the

sentence processing to a file. N _s the number of phases

of the processing to be printed (I. parsing, 2.

interpretation, and 3. execution). It is called by eGO

when LOGFLAG is set.

(PLURAL ENDING)

PLURAL is a function for use as a condition in the

MORPHTABLE of the morphological analysis component. It

tests whether the dictionary entry for the current word •

is marked as a noun with regular _nflection of the type

ENDING,

(PNCHECK NP PNCODE)

PNCHECK _person-number check) is the function which

checks for person-number agreement between a noun phrase

D.20

Page 21

(NP) and a person-number code {PNCODE),

the _rammar to check person-number

verbs and their subqects.

It is used in

agreement between

(POP POPVAL POPFEATURES)

POP is the function which returns from a recursive

call in the transition network grammar. It ks used by

the function STEP for the interpretation of POP arcs, and

can occasionally be used as an action on an arc of the

grammar. POPVAL is the structure that is to be returned

from the recursive call (and bound to the current

constituent pointer .) and POPFEATURES is the llst of

features which is to be assoclated with the current

constituent.

POP restores the confiqurat_on whlcn was saved on

the stack at the time of the PUSH which initiated the

present level of computation and performs the actions on

the push arc, after setting the flag NOMOVEFLAG which

indicates that the function TO at the end of the PUSH arc

is not to advance the input string (slnce it has already

been advanced by the recurslve computation). If the

stack is empty, and the STRING is also empty, then POPV_L

is a complete parsing of the sentence, and is added to

the list VALUZS which is being ma,nta_ned by PARSER. It

the string is not empty at th_s tlme, then the

confiauration is blocked.

(POPARC.FEATURES ARC)

POPABC.FEATURES is a function for extracting from a

pop arc a form which evaluates to a list of features to

be associated with the construction which is being

returned by the pop arc.

(POPARC.FORM ARC)

POPARC.FORM is a function which extracts from a pop

arc a form which Is to be evaluated to Produce the

structure which is to be returned by the pop arc.

(POPCONJ)

POPCONJ is one of the functions used for the

facility which handles reduced conjunctions (see CONJOIN

and SYSCONJ). A call to POPCONJ is placed on the stack

by CONJOIN when it resumes the suspended configuratlon

for the first conjunct in a conjunction. This call to

POPCONJ will be invoked when the first conjunct has been

completed, at which time it will determine whether the

two components of the conjunction are compatible, compute

the syntactic representation of the conjoined phrase, set

D.21

Page 22

up a configuration on the al_ernatives llst for the

computation which is to be resumed at this Point, and

abdicate control by returning ,END as its value. This

will enable DETOUR to pick up the conflguratlon from the

ALTS list and continue parsing. (This method of

proceedinq with the parsing is used to restore the value

of the input string, which has been temporarily destroyed

bY the operation of STEP in LEXMODE mode, without

interfering with any other active configurations which

may be on the current ACFS llst.)

(PPATH.ACONFIG PPATH)

A Partial path (PPATH) is a path entry without a VAL

(that is, it represents a path which has decided what arc

to take next but does not Yet have the result of the

transition). It is saved in the stack entry when a

computation pushes to a lower level and is used to build

the full path entry when the embedded computation

returns. PPATH.ACONFIG is a function which extracts the

previous augmented configuration from the PPATH entry.

(PPATH.ARC PPATH)

PPATH.ARC is a function

followed from a PPATH entrY.

whl cn extracts the arc

(PPATH.BACK PPATH)

PPATH.BACK is a function for backzng up along the

path entries for a configuration. Its argument is a

partial path (PPATH) which consls%s of a record of an

augmented configuration (_CONFIG) and the arc which was

followed from that configuratlon. It lacks the

information about the computation of that arc Which is a

part of a complete path. (See the 14stlnq FORMATS in the

computer listing for the specification of the LISP

structure formats for Partial Paths, paths,

configurations, and augmented configurations,) If the

partial path PPATH is not the first one in a call to the

network, then its last element is the full PATH entry

recording the configuration prior to the current one, and

CDR of this is the partial path associated with it. If

there is no previous path as the last element of PPATH,

then this configuration is the first one after some PUSH

(or indeed the first one in the analysis of the string)

and the preceding partial path _s taken from the STACK

assoociated with PPATH.

(PPATH.CONFIG PPATH)

PPATH.CONFIG is a function whlcn extracts

previous configuration from a PPATH entry.

the

D.22

Page 23

(PPATH.HOLD PPATH)

This function extracts the HOLD llst from a partial
path.

(PPATH.PATH LIST)

This function extracts the previous path entry from

a partial path.

(PPKTH.REGS PPATM)

This function extracts the registers list from a

partial path.

(PPATH.STACK PPATH)

This function extracts the stac_ from a partial
path.

(PPATH.STATE PPATH)

PPATH.STATE extracts the previous state from a PPATH

entry.

(PPATH.STRING PPATH)

PPATH.STRING extracts the str_ng position at the

beginning of the transition from a PPATH entry,

(PPT XTR FILE)

PPT (pretty print tree) prlnts a Parse tree (XTR) in

a pretty format to the flle FILE. The function which

actually does the printing is PPTI.

(PPTI XTR XID FILE)

See PPT.

(PRINTPARSES FILE)

PRINTPARSES is the function used by SENTPROC to

printout the result of the parsing when the appropriate

flags are set. If the global flag PPTFLAG is set, then

this happens using PPT to Obtain the printout in a pretty

format. Otherwise, the Prlnt_n_ _s in the ordinary

parenthesis notation corresponding to the internal list

structure.

_PUNCTALIZE STRING)

D.23

Page 2,

PUNCTALIZE is a function called bY LEXPAIRS as part

of the LEXIC _ackage to Perform punctuation analysis on

the first atom in the list STRING. PUNCTALIZE is called

when the next "word" in the sentence is not in the

dictionary to see if it might really be a known werd with

punctuation at the end or two words run together with

punctuation. If this is the case, then PUNCTALIZE

returns an updated strinq (or a list of alternative such

strings) with the word and the punctuation separated.

Otherwise it returns NIL.

(PUSH PS)

PUSH is the function Used by STEP to interpret PUSH

arcs in the grammar. It can also be used as an action on

the arcs of the grammar under certain circumstances. In

the normal mode (when LEXMODE _s not set) it saves the

current state, register contents, actions to be

performed, MOLD list, and part)al path on the stack and

starts a new configuration at the lower level with the

initial register contents from SREGS (those register

contents sent down by ca_Is to SENDR). Mhen LEXMODE is

set, then PUSH must take its constltutent from the trail

which the parser is following. If nothing was sent down

with a SENDB, then it merely takes the value stored in

TRAILVAL for the trail being followed. If there were

register contents sent down, however, then it calls REDO

to follow the path associated w_th the computation of

that constituent to construct the neW constituent based

on the new initial registers sent down.

(PUTLEX STRINGPOS LEXLIST)

PUTLEX is a function Called by LEXIC to add the list

of alternative lexical analyses at the current stringpos

to the table LEXT_BLE. Thus, when other paths encounter

the same string postion, the lexlcal analysis will be

available there and will not be recomputed.

(0 . OUERY)

Q is the function called by TALKER for Processing

input sentences. It sets the variable SENTENCE, calls

SENTPROC, and logs the resulting output if LOGFLAG is

set.

(QGO LABEL)

QGO is the function called bY TALKER to continue

looking for more parsinqs, to rePeat a semantic

interpretation, etc. It calls SENTPROC with a label

LABEL which specifies a location wJtILin SENTPROC at which

processing is to be started.

D.24

Page 25

(QSTART)

OSTA_T is a predlcate used In the grammar at the

beginning of a sentence to determine whether it looks

like a question -- i.e,, it starts w_th an interrogative

word Or with an auxiliary Verb.

(REDO TRAIL REGSI

REDO is a function called by PUSH when it is

following a trail during the LEXMODE phase of the

recognition of a reduced conjunction. It will redo the

computation indicated by TRAIL starting with the register

contents REGS instead of those which were originally used

by TRAIL.

(RELATEDWORDS WORD)

RELATEDWORDS is a function used by DICTFETCH to

determine the list of words related to a given word that

should also be fetched into the In-core dictionary with

it. If returns any words Which are used in substitute or

compounds entries in the dictionary entry for the word,

and if the word is irregular it returns the root.

(RELATIVIZE FORM)

RELATIVIZE does a top level search of the list FGRM

for the first NP node. When found, It converts it into

an appropriate form for sending down into relative

clauses, i.e. it replaces the determlner with (DET WHR)

and removes any prepositional phrase or relative clause

modifiers. R_LATIVIZE is used In state 5/QPI to make the

rest Of the sentence following a fronted questioned

prepositional phrase, a relative clause on the head noun

of the PP.

(REQUESTDEF LEX)

REQUESTDEF is the functlon whlcn is called to

interact with the user of the system when an unknown word

is encountered by the parser. It prints out a comment

followed bY the unknown word, and goes into a break to

allow the user to define the word (using DDEF) or to

change it (usinu CHANGEWORD).

(RESUME ARGS)

RESUME is a function which can be called on an arc

of the grammar to resume a PUSH computation which has

been assigned a feature RESUME by the function RESUMETAG.

This provides for the termlnatlon of a PUSH computation

at one point in the string and resuming it later at

D.25

Page 2b

another part of the string, a,d it provides a mechanism

for handling certal, phenomena which would be called

right-extraposition transformations an transformational

grammar theory. ARGS is a llst of regasters which are to

be sent down to the lower network when the PUSH is

resumed.

(RESUNETAG STATE)

RESUMETAG is a function for computing a RESUME

feature for a configuration which wall enable it to be

resumed later, beginning in state STATE. It is used bY

arcs of the grammar in conjunction with the function

RESUME,

(RFEAT , ARGS)

REFEAT is a function for retrieving syntactic

features from the dlctionary entr_es for words. ARGS is

a llst whose first element is the name of the syntactic

feature desired, and whose second element indicates the

word whose dictionary entry is to be consulted (which may
be indicated either bY the name of a register which

contains it, but the special pointer., or by some other

LISP expression).

(SANPLEP WORD)

SAMPLEP is a function used bY the morphology

component to recognlze words that look llke sample

numbers -- i.e. an S followed by five dlgits,

(SBUILD)

SBUILD is the function called by the grammar for

building the syntactic structures of sentences. It

gathers up the varlous pieces of the structure from the

registers in which they nave been stored and assembles

them into a syntactic tree using _he function BUILDQ.

(SCANSTACK TEST)

SCANSTACK is the function which scans the stacM

looking for a stack level wnlch satisfies the test TEST.

It is used in LIFTR and GETR for locatlng levels of the

stack where registers are to be set or interrogated.

(SCOMP V)

SCOMP is a function which tests wnether a verb V

takes a sentence complement by checking the dictionary

entry for V.

D.26

Page 27

(SENDACTP ACTION)

SENDCTP is a predicate used by STEP and REDO for

identifying actions which send register contents down to

lower levels (i.e. SENDR and SENDRO),

(SENDR REG FORM)

SENDR is a function which sets the contents of the

register REG to the value of FORM at the next lower level

to which control will be passed by a PUSH arc,

(SENDRQ BEG FORM}

SENDRQ is llke SENDR except that FORM is not

evaluated.

(SENTPROC SENTENCE LABEL)

SENTPROC is the major dispatcnlng routine for the

Drocessing of an input sentence. It dlspatches the input

to the various routines PARSER, SPROC, and EXECUTE, times

comDutatlons, prints out intermediate results and

timings, and logs the results, as appropriate, It also

provides for the feedback to the parser to obtain

additional parsings If the semantic _nterpretation of the

first Darsin_ fails (up to maximum number of times

specified by MAXREPARSES), and for the redolnq of a

previous execution or interpretation or the continuation

of parsing by calls which specify a LABEL = EXECUTE,

INTERP, or PARSE, respectively,

(SETR REG FORM)

SETR is the function which sets the contents of a

register REG to the value of form at the current level of

Drocessinq.

(SETRE REG FORM)

SETRE is llke SETR except that REG is

obtain the name of the register to be set.

evaluated to

(SETRQ REG FORM)

SETRQ is llke SETR except

evaluated, but taken literally,

that FORM is not

(SETUP FILENAME)

SETUP is the function to be called by a user when he

enters the sytem to set up the lower for_. FILENAME is

the name of the lower fork file -= usually

D.27

Page 28

<WARNER>LOWFORK,SAV,

(SHOWTIME CONSES TIME FILE)

SHOWTIME is the function whlcn prints

information to a file in the BBN LISP system.

timing

(SPLIT . SPLITARCS)

SPLIT is a function which can be used on arcs of the

grammar to cause two or more a_ternatlves to be followed

at once, SPLITARCS is a llst of alternative

continuations of the arc on wnlch the SPLIT action

occurs, and all such alternatives w111 be followed in

parallel. This feature has net been used in the current

grammar.

(SPOP POPVAL POPFEATURES)

SPOP is a function which Is used to perform the

selective modifier placement triggered by the SPOP arcs

in the grammar. It locates the alternatives (if any) to

the arc which pushed for the constituent about to be

popped and determines whether that configuration could

have popped instead. If so, If follows out the

possibilities of that alternative to see if any of the

configurations that could be reached DY successive JUMPs

and POPs (or SPOPs) coUld also push for the same

consituent. If it finds any other configurations which

could have pushed for this constituent, it considers them

all aS candidates and decides which one to follow on the

basis of semantic entries in the dictionary.

(SPROC P)

SPBOC is the function which

interpretation of the node P

possible semantic interpretations,

INTERP which does the work,

begins the semantic

and returns the list of

It calls the function

(STACKELT.PPATH LIST)

This function is used to extract

from an element of the stack.

the PPATH entry

(STACKELT.REGS STACKELT)

STACKELT._EGS is a function for extracting the

register contents of a higher.level computation saved on

the stack from the stack entry,

(STEP CONFIG ALT)

D.28

Page 29

STEP is the major function of the transition network

parser. Its Job is to ta_e a slngle configuration

(CONFIG) from the active configurat_ons list of PARSER

and compute from it a llst of configurations which are

possible at the next point in the }nput string, It takes

the list of arcs for the state of the configuration and

considers each in turn until it finds one which can be

followed. It also interprets the conditions and actions

on the arcs, and generates ALTARC alternatives on the

ALTS list for any arcs which remain untried when it

decided to follow one.

STEP is also the function which is called to pick up

the processing of an alternative taken from the ALTS

list. In this case, the argument ALT will be set to the

alternative to be restarted_ and the setting of CONFIG

will be irrelevant. In this case, STEP will branch to

location ALT where it determines the type oZ alternative

and does the apProprlate thing to resume the processing.

At location LZ, STEP unpacks the confiquration

CONFIG into its component parts (STATE, REGS, HLIST, and

PATH), and at location L i, it begins the determination of

the list of arcs to be considered. If, however, the tlme

already spent in the parsing exceeds a global limit

MAXTIME, the parsing is terminated with an appropriate

comment. If the current LEX (the current word in the

strina) is marked wlth the property LEXARCS, then it is

an "interrupt word" and the list of arcs to be tried is

not taken from the value of the state name as would

usually be the case, but is instead computed by the

expression which is the value of the property LEXARCS.

This facility allows for the convenient handling of

special function words Which can occur at almost any

point in a sentence with a regular effect. For example,

the conjunction scope indicators "both" and "either" are

handled bY this facillty in the current system, Another

special case for the determlnat_on of a list of arcs

other than that listed for the state is the SYSCONJ

facility. If the flag SYSCONJFLAG _s set and the current

LEX is a con3unction and there are no CAT CONJ arcs

leaving the current state, then the SYSCONJ facilltY

provides its own special default CAT CONJ arc in Place of

the normal list of arcS. ThlS does not happen when

LEXMODE is set, however (i.e. when STEP is already

interpreting a part of a reduced conjunction). When the

global flag SPLIT is set, the llst of arcs will be moved

to a list of "untried" split alternatlves (SPLITS) and

control will branch to END where there is a test for

uncompleted SPLITS (i.e. alternatives to be followed in

parallel) before returning. Normally, however, the llst

of arcs is taken from the value of trLe state, and control

passes to L2.

D.29

Page 30

L2 begins the basic loop which trles successive arcs

from the list A_CS. If there are no more arcs, then

depending on the settings of various mode variables and

other parameters, control either passes to END or HELP.

Also if MODE is non-null, the blocked configuration is

added to the llst BLOCKS (for later use bY LONGBLOCK in

ASSIST). If the number of blocked configurations exceeds

the global parameter RAXBLOCKS, the parsing is

terminated.

L3 begins the processing of the arc selected bY

initializing the values of *, FEATUBESp $BEGS, and

NOMOVEFLKG. The atom * is the pointer to the current

constituent (initially it ts equal to the current word

LEX, but after popping from a lower level it is the value

of the constituent returned, and on a virtual ARC it is

the value of the constituent which is taken from the HOLD

list). FEATURES is the list of features associated with

the current value of ., and SREGS is the list of

registers which have been sent down to the lower level bY

SENDR actions immediately Prior to a PUSH to a lower

level). NOMOVE?LAG is a flag which Indlcates whether the

input string is to be advanced after the transition

caused by the arc (it is initially set to NIL indicating

that the string is to be advanced, but various actions on

the arc can cause it to be reset). The ma3or Part of the

function STEP consists of the SELECTQ at location L3

which determines the type of arc and performs the

appropriate actions.

A CAT arc is followed if LEX can be a memDer of the

syntactic category indicated bY the label on the arc

(ARC.LABEL ARC). If LEXMODE is set, however, this arc

can only be taken if the word was also taken as a member

of this category in the trail which is being followed.

The value TEMP which is set by the call to CATCHECK or

taken from the trail (TRAILVAL) _s a form-features list

whose CAR is the root form of the word LEX and whose CDR

is a list of inflectlona] features for the word. TheSe

values are bound to * and FEkT_]RES, respectively, as a

result of choosing a CAT arc, and control passes to

location TST which checks the condJtions associated with

the arc.

A PUSH arc indicates a recurs_ve application of the

network to find a phrase of the type recognized bY the

state which is given as the arc label. The condition on

the arc is tested before the PUSH _n order to determine

whether to perform the PUSH. _f LEXMODE is set, then the

PUSH does not occur unless the corresponding entry on the

trail being followed was also a pUSH to the same state.

To facilitate the use of SENDR's to send register

contents down into the lower level prlor to the push,

D.30

Page 31

there is an optional constituent o± the PUSH arc

immediately after the condition on the arc which consists

of a list of actions to be executed prior to the actual

call to PUSH. This list of actions _s indicated by an

initial element "I". Also for the same reason, any

initial sequence of actions of the SENDR type (tested by

SENDACTP) are executed Prior to the PUSH, The call to

the function PUSH wil_ save the current state and

register contents and the uncompleted actions on the arc

on the pushdown stack for continuation after the embedded

phrase has been recognized,

POP is a "pseudo" arc in the sense that it has no

"destination" at the end. Rather Jt indicates a return

from an embedded computation to the configuration which

PUSH'ed for it. It is represented as an arc so that its

choice can be ordered with respect to those of the other

arcs and so that it can be made conditional on the

context by using a test on the arc. POP arcs are not

permitted when LEXMODE is Set, s_nce the PUSH's are never

actually executed in this case (and therefore, the trails

which are being followed never have POP arcs on them).

POP's are also forbidden if there are entries on the HOLD

list put on at this level Which have not yet been used bY

any virtual (VIR) arc (this is part of the HOLD facility

for dealing with left-extraposltlon transformations).

SPOP is a variant of POP which is used In some systems

for selective modifier pJacement but is equivalent to POP

in the current system.

A JUMP arc is an arc Which performs some actions but

does not advance the input string. The label on the arc

names the state to which control _s to go after the

actions are executed if there is no terminating action on

the arc.

A VIR Cvirtual) arc is an arc which picks up a

constituent from the HOLD list (placed there bY a call to

HOLD On some arc of the grammar) and treats it as if it

had just pUShed for and found the constituent at this

point in the string. It sets • and FEATURES to the

values taken from the HOLD l_st and then executes the

actions on the arc (after Setting NOMOVEFLAG to Prevent

the input string from advancing).

A WRD arc tests for the presence of a particular

word in the input string. Similarly a MEM arc tests for

one of a specific list of words, A TST arc allows for

the testing of an arbitrary condition expressed in LISP

as the condition on the arc. The label on a TST arc has

no effect on the operation and can be used for purely

mnemonic purposes by the grammar writer. A SUSPEND arc

is an arc which suspends the processing of the current

D.31

Page 32

state with an incremented weight (incremented by the

amount indicated in the arc label). Thls can be used to

control the order in which parsings are discovered bY

suspending "unlikely" alternatives to be tried only after

more likely possiblitles have been tried. There is also

a SUSPEND action which can be used on an arc to suspend

the processing of Just that arc.

A SPLIT arc is essentially a group of arcs grouped

together with the "conjunction" SPLIT to indicate that

the arcs in that group are to be followed in parallel.

It is similar to the SPLIT action which can be used on

arcs to indicate paral3el alternative "tails, for a

single arc.

A DO arc is an unconditional llst of actions to

performed with a destination specified at the end.

be

The location TST Performs the cnecklng of conditions

on the arcs for a number of d_fferent arc types, and

similarly the location ACT executes the actions on the

arcs. The location ALT performs the appropriate actions

for resuming an alternative, and HELP provides a break

for user interaction in certain cases.

The location END is entered when a given

configUration either b3ocks or is completed. It checks

whther there are any uncompleted configurations (UCFS)

placed there bY SPLIT actions on arcs, and if so

processes them. It a_so tests for any unprocessed

confiqurations (SPLITS) placed there bY a SPLIT arc or by

the mode flag MODE belng set to SPLIT, and it processes

all of these before returning. When all "parallel"

computations have been performed, it returns the list

(VCFS) of resultinq configuratlons which have been

constructed. (The actUa3 construction o_ the resulting

configurations is performed by the function TO when it

occurs as terminal action on an arc.)

(STORALT ALT)

STORALT is the function used _n

placing alternatives on the ALTS list.

many Places for

{SUBJLOW VERB)

SUBJLOW is a predicate which _ndlcates whether the

indicated verb undergoes Subject lowering (as opposed to

object lowering) when it occurs with both a direct object

and a to complement. SUBJLOW _s true of "promise" type

verbs where the interpretation of "I promised John to go"

means that I will be qoing (as opposed to "I ordered John

to no").

D.32

Page 33

(SUPFORM ENDING)

SUPFORM is a predicate for use in MORPHTABLE entries

for testing the type of conjugation which an adjective

undergoes for the superlative form.

(SUSPEND N)

SUSPEND is an action for use on arcs of the grammar

for suspendi,g a given computatlon in favor of "more

likely" ones. Zt increments the weight associated with

the current computation bY the amount N and generates an

ALTARC alternative on the ALTS llst,

(SUSPENDW WEIGHT INCREMENT)

SUSPENDW is the function wnlcn computes the

resulting weight determined bY the current weight WEIGHT

and the increment specified on a SUSPEND arc (INCREMENT).

It currently adds the two, but is factored out as a

separate function so that we could experiment with

multiplicative rather than addlt_ve weights.

(SYSCONJ STATES)

SYSCONJ is the action which invokes the system

conjunction (SYSCONJ) facility for reduced conjunctions.

It can either be used on CAT CONJ arcs by the grammar

writer, or it will be supplied automatlcally for states

which don't have CAT CONJ arcs if SYSCONJFLAG is on. It

is the first function of the trio of SYSCONJ functions

(SYSCONJ, CONJOIN, and POPCONJ) to be executed. It

causes the insertion of a special stack entry with a call

to CONJOIN into the stacks of a set of restart

configurations (computed by CONJSTARTS) and the

generation of an ALTCONJ alternative for each such

confiauration. It then returns *END so that STEP will

terminate the current conflguratlon and pick up one o±

the generated _LTCONJ alternatives.

(T.NODE NODE)

T.NODE is a function Which extracts

from a node in a tree fragment.

the node name

(T.REF NODE)

T.REF is the function which assigns to nodes in the

syntax tree a reference which is used for associating

information with that node In the TAGLIST, It is

currently identical with the LISP pointer to the node,

D.33

Page 3_

(T.SONS NODE)

T.SONS is a function for comput4ng the list of the

sons of a node of a tree. It depends on the notation

being Used for trees in the system, If it is the

two-Paren notation, then the sons are the CADR of the

node_ otherwise they are the CDR,

(TAILS LIST)

TAILS is a function for enumerating the tails of a

list. (E.g. the tails of (A B C) are (A B C)p (B C) and

(C).) It is used by CONJOIN for computing the possible

tails on which the suspended flrst conjunct of a

conjunction may be resumed,

(TAILSI LIST)

TAILSI is like TAILS but i_ omlts the singleton

tail. (E.g. TAILSI of (A B C) gives (A B C) and (B C) ,

but not (c).)

(TALKER MODE)

TALKER is the major executive of the English

Language preprocessor The first thlng to be done by a

user after loading the system is to call TALKER wlth an

argment MODE (usually NIL) to indicate the mode in which

he wants to operate. (MODE of NIL indlcates use of the

mode settings as they exist at that time, without changep
while a non-null MODE wi31 cause MODESET to be called to

set the appropriate mode variables.) TALKER takes care of

the interaction with the user, accepting sentences and

LISP commands as input, and performlng the appropriate

actions for each. In the BBN LISP system, it also takes

care of saving the input sentences on a history list

which enables the user to refer to and reuse the results

of his previous tyPein.

(THATCOMP VERB)

THATCOMP is a predicate which tests whether

can take a THAT complement.

a verD

(TIMEP X1

TIMEP is a function whlch can be called for

morphological analys_s of an atom whlc_ looks like a time

(i.e. a number less than 2_ followed by a colon followed

by a number less than 6Z).

(TO S)

D.34

Page 35

TO is the functAon used by arcs In the grammar to

indicate the destAnation (next state) for an arc. It

computes the configuration which results from the

transition and returns a label to STEP (through ACT)

indicating what location it should pass control to (which

depends on such factors as whether NOMOVEFLAG is setp

whether it is at the end of the string, etc.)

(TOCONP VERB)

TOCOMP is a predlcate wnlch tests whether a verb can

take a TO complement,

(TRACER . ARGS)

TRACER is a function which is called at many points

in the parser for providing a tracing of the course of

the parsing when the f3ag TRACE _s set. It is an

extremely valuable tool for debugging grammars, and is

also a useful instructional tool for teaching the

operation of the parser and the grammar.

(TRAIL PATH)

TRAIL makes a llst of the path entries in a path in

the order in which the transitions occur so that they can

be followed by the parser in LEXMODE mode. (The normal

order of entries in a path is reversed and "right

nested".)

(TRAILI PATH)

TRAILI is llke trail except that it skips the

confiaurations that occur immediately after JUMp and vIB

transitions.

(TRAILS PATH)

TRAILS is a function called by CONJOIN to make a

list of the trails at different levels of the analysis of

the right-hand shared portion of a reduced conjunction.

These trails are the possible trallS on which the

suspended first component of the con3unction can be

resumed.

(TRANS VERB)

TRANS is a predlcate wnlch tests whether a

transitive (i.e. can take a direct obgect).

verb is

(TRANSCOMP VERB)

D.35

Page 36

TRANSCOMP is a predicate whlch tests whether a verb

can take both a direct object and a complement,

(VPARTICLE , ARGS)

VPARTICLE is a function for testing whether a verb

combines with a particle to form a verb (e,g. "call up,"

etc.). ARGS is a list whose CAR specifies the verb in

question (usually by naming the register which contains

it) and whose CADR specifies the particle in question

(again b7 naming a register or bY reference to the

pointer ,).

(VPASSIVE V)

VPASSIVE is the predicate which tests whether a verb

V can be passivlzed, This is true elther if it is so

marked in the dictionary or [as a default) if it iS

totally unmar_ed for syntactic features.

(VPREP ARGS)

VPREP is a function which tests whether a verb can

take a prepositional modifier with a glven preposition,

ARGS.

(VTRANS o ABGS)

VTRANS is a function which tests whether a given

verb is transitive (i.e, whether it can take a direct

object). This is true either if the verb is so marked in
the dictionary under the property FEATURES, or (as a

default) if the verb is not marked wlth any syntactic

features at all.

(WRD . ARGS)

WRD is a function for use in conditions in the

grammar to test whether the current word * or a word in

some register is a member of a llst of words. CAR of

A_GS is the J ist of words to be tested, and CADR of ARGS

specifies the word to be tested.

D.36

Page 37

II. SEMANTIC INTERPRETATION FUNCTIONS

(# N)

The function # Is used IB templates of semantic

rules to reference the node Of the tree that matches the

node numbered N in the tree fragment used for the match.

For example, in a template (NP,N (T_STFN (# I))), the

expression (# I) will evaluate to the node of the tree

which matches node I of the fragment NP.N. TESTFN in

this case is a hypothetical condOr:on wnlch is to be true

of node (# I).

(,FLAG X)

• FLAG is used bY the interpreter in interpreting a

node as a topic, If the User has emphasized any Phrases

bY saying, for example, "rugs, In particular" or

"especially vugs", "rugs", as a topic, is starred:

(FOR EVERY X1 / DOCUMENT : (ABOUT XI (VUG .)...) ;

(PRINTOUT XI)).

(AGREEMENT ANTECEDANT SPECIFIER NOUN ADJ SEMARKERS)

AGREEMENT is a predicate which tests anaphorism -

antecedant agreement. The criteria for agreement are:

I. The candidate ANTECEDANT has semantic markers

which match those required of the true antecedant

(SEMARKERS). It is not always possible to decide what

semantic criteria the antecedant should meet. Hence,

SEMARKERS is an optional argument. Semantic requirements

are sometimes made bY the dominant verb. For example, in

"Does it contain Aluminum?" the antecedant ot "it" must

be a sample, for this question to make sense to the

system. SEMARKERS for the above would be (SAMPLZ).

2. A pronominal anaphorism matcheS any candidate

antecedant.

3. If the anaphorism rests on its determiner e.g.

"those analyses", the head noun of the antecedant must

match the head noun of the anaphor)sm.

_. If the anaphorism contains any adjectives e.q.

"those barium analyses", the antecedant must contain at

least one of them.

(ANTECEDANT ANAPHORISM MARKERS)

ANTECEDANT locates the antecedant of an anaphorism.

MARKERS is an optlona) argument. W_en present, it

contains a list of semantic markers, one or more of which

must be characteristic of the antecedant.

D.37

Page 38

(ANTEQUANT VARIABLE)

ANTEQUANT inserts the quantifled antecedant found bY

ANTECEDANT into the Semantic _nterpretation under

construction. _f the antecedant is a proper noun,

ANTEQUANT acts llke QUOTE in the rlgnt hand side of a

rule, otherwise it acts like QUANT.

(ANTORDER Vl V2)

ANTORDER is a compare function used by SORT in

ordering the list of possible antecedants, SORT is

called following the interpretation of a request,

ANTORDER returns T is Vl should precede V2 in the list,

ANTECEDANTS. For example, Vl should precede v2 if Vl is

a variable used in the latest request and V2 is not.

(AVERAGE?)

AVERAGE? is a help function that is called by the

interpreter when the user refers to "the concentration of

X". Since the system knows about many concentrations of

X, one for each analysis of X, AVERAGE? asks the user if

he means "the average concentration of x". If he does,

the system returns the average over the concentrations

given in all analyses of X.

(CCHECK TEMPLATE MLIST)

CCHECK is the function wh_c_ checks semantic

conditions in templateS during the matching of semantic

rules by the interpreter. TEMPLATE _s the template in

question, and MLIST is a LIST of possiDle matches for the

template which are to be screened bY CCHECK, Each

element of MLIST is an ALIST whose elements are dotted

pairs of node numbers in the template and their

corresponding matches in the tree.

(CONSTITUENTS NODE)

CCNSTITUENTS is the function wh_c_ when applied to a

node of a parse tree Yields a llst of the immediate

constituents (daughters) of that node. For the tree

notatior currently in use, this Js simply the CDR of the

node.

(DEFAULTSEM P TYPEFLAG)

This function is used in the semantic interpretation

system to provide the default interpretation T for the

restrictions on the range of quant_flcation of a noun

phrase, when there are no restrictlons implied bY the

8RULES. It is called by INTERP.

D.38

Page 39

(DOCP X)

DOCP is a predicate that tests whether

document according to LSNLIS conventions, i,e.
form DYy-yyy.

X is a

X has the

(DRULEF p)

DRULEF

interpreting

P.

returns a lls% of DRULES to try when

the determiner s_ructure on the noun phrase

(EQU , ARGS)

EQU is a functlon for use _n the templates of

semantic rules. ARGS is a list whose flrst element is a

number. EQU checks whether the terminal string dominated

by the node corresponding to th2s numDer in the template

match is identical wlth the remainder (CDR) of the llst
ARGS.

(GETREFS P REFLISTS)

GETREFS is a function used In the semantic

interpretation component by the functlon SORTREFS, which

sorts the llst of sub nodes to be interpreted into

left-to-right order. It serves double duty as a

predicate indicating whether p is a node which is to be

interpreted, and if so, returning the list of the

alternative reflists which belong to that node, For more

detail, see SORTREFS.

(GETTAG P TAGNAME)

GETTAG is a function for retrieving items from

TAGLIST, a global variable which holds tags associated

with nodes in the tree and behaves llke a property list

for tree nodes. GETTAG returns the value of the tag
TAGNAME for the node P.

(HELPER SS COMMENT)

HELPER is an interactlve help routine which many

semantic inter, prefer functions call when they need help

from the user. For example, INTERP calls HELPER when i%

can't interpret a node. RMATCH calls HELPER When a node

can have several interpretations though only a single

interpretation is allowable (FAIL mode). ANTEQUANT calls

HELPER when an antecedant Is mlsslnq its INTENSION.

(IMPORT VBL)

D.39

Page ._

IMPORT assigns an importance number to a quantified

variable. IMPORT is ca31ed bY ANTORDER which uses it to

order the variables according to their likelihood of

being referenced anaphorlcally. The importance of a

variable is raised if it has any class restrictions. It

is also raised if the class has to be computed, rather

than merely being read off a llst.

(INTERP p TYPEFLAG)

inter

of th

TYPEF

INTER

inter

quant

SET.

phase

itsel

the t

is th

typef

indic

combi

INTERP is the main

pretation component.

e node P "as"

LAG. That is, T

P how to interpret

pret a noun phr

ification over ind

For interpretln

s of interpreting

f, and the restr

ypeflaQs NIL, NRUL

e normal interpret

lag is specified.

ate the interpre

nation of keyphras

function of the semantic

It computes the interpretation

or "with respect to" the flag

YPEFLAG Is a parameter which tells

the node P. For example, to

ase as a set _nstead of the normal

ividuals one can use the typeflag

q normal noun phrases, the three

the determiner structure, the noun

ictive mod_flers, are indicated by

ES, and _RULES. The NIL tYpeflag

ation which is assumed if no other

The typeflag TOPIC is used to

ration of a node as a Boolean

es.

INTERP's first action

aS already been interpret

ase it recovers the inter

eturns without redoing

pecial TYPEFLAGts HEAD, T

nterpretation does not

ules, INTERP returns imme

nterpretation. INTERP

iternative which consis

nterpretations and g

alled an SQ-PAIR consi

SEM) which is to be a

uantifier (QUANT) which

overning sentence node.

he three special cases

nterpreter called the fu

AND TYPEFLAG to determine

se for the interpretatio

he matching and return th

ALUE. If there is no

EFAULTSEM may supp

only in the case

then INTEBP either

depending on the se

is to determine if the node P

ed with this typeflag, in which

Pretatlon from the TAGLIST and

the _nterpretation. Also for

ERM, AND IDENTITY, where the

require the use of semantic

diately wlth the appropriate

returns as its value a list of

ts of palrs of semantic

overning quantifiers. Each pair ,

sis of a semantic interpretation

tracked to the current node, and a

is to be passed up to a

When the typeflaq is not one of

listed above, the semantic

nctlon RULES with the arguments

the llst of semantic rules to

n, and calls MATCNER to Perform

e SEMLIST WHICH IS TO BE THE

semantic interpretation, then

IY a default interpretation (currently

of the typeflag RRULES), but if not,

return NIL er goes into a break

tting of the flag HELP.

(ISOTOPE X)

D.40

Page _I

ISOTOPE tests whether X Is an isotope of some

element. If so, it returns the element, otherwise, NIL.

(KEYPHRASE TREELIST)

KEYPHRASE returns a list of the slgnlficant terminal

nodes of TREZLIST. It ignores determiners, auxiliary

verbs, tenses, number and non,restrlctive modifiers.

(LEAFMEMB X LIST)

LEAFMEMB is a function for determlnlng if any of the

"leaves" of the llst structure X are members of the list

LIST.

(LINEP NODE)

LINEP is a predlcate which checks whether

the form (N LIRE n), where n is an _nteger.

NODE has

(MARKERS WRD)

MARKERS returns the llst of semantic markers

characteristic of WRD. If WRD is a sample (e.g.

$IZ0@3), MARKERS returns (SAMPLE). If WaD is a document

(e.g. D70-221), MARKERS returns (REFERENCE). otherwise,

it gets the semantic markers off the property list of

WRD.

(MATCHER RULELIST P MODE)

MATCHER is the function which matches semantic rules

against nodes in the tree. RULELIST is the list of rules

to be matched, P is the node to be matched against, and

MODE is a flag whlch indicates what to do with multiple

matches. If MODE is AND then multiple matches are ANDed

together; if it is OR, then they are OR'ed_ if it is

SPLIT, then they are split into d_stlnct (semantically

ambiguous) interpretations, and _f it is FAIL, then

multiple matches cause an error. MATCffER accumulates a

list SEMLIST of possible Interpretatlons (S-Q pairs),

calling the function MATCHGROUP for each (non-null)

element of RULELIST. NILUs in RULELIST serve as

"barriers" which terminate the testJng of rules if a

matching interpretation has already been found in the

list, but allow the testing to cont4nue if there have

been no matches yet. MATCMER calls the user help

function NO-M_TCHE$ if none of the rules on RULELIST

match and the flag USERFLAG is set to T.

(MATCHGROUP RGROUP)

D.41

Page _2

The elements of the list RULELIST in HATCHER may be

either single semantic rules or "groups" OF SEMANTIC

RULES WHICH ARE GROUPED TOGETHER WITH A MODE OPERATOR

WHICH SPECIFIES HOW SIMULTANEOUS MATCHES OF DIFFERENT

RULES ARE TO BE HANDLES WITHIN THAT GROUP. MATCHGROUP iS

the function which handles the matching of such a group,

If RGROUP is an ato_, then it is a rule to be matched;

otherwise it is a group whose first element (like MODE)

specifies that simultaneously matching rules are to be

SPLIT into different interpretationsp AND*edp OR'ed, or

cause FAILure. The first element of the RGROUP is saved

on CONJ, and all of the ru_es Jn the group are tried.

The WHILE expression elemlnates the results of

non-matching rules, and if there are not more than onep

then the result of the matching rule is returned. In

general, each rule in the group may nave returned several

distinct interpretatlonsp and the functlon COMBINATIONS

takes all combinatlons of these. The function SEMCONJ

performs the task of combining _hese interpretations wlth

the operator CONJ.

(MEANING? NPNODE)

MEANING? is a predicate which returns T if the noun

phrase NPNODE has been interpreted and the flag USERFLAG

is T.

(MEM N MARKER)

HEM is used in the Jeft hand side of semantic rules

to check whether a numbered node in a tree fragment

belongs in one of the semantic classes in MARKER, MARKER

is a list of semantic markers, The node may belong to a

semantic class for one of Several reasons:

I. the head of the node has the same name as one of

the markers. E.g. ROCK belengs to the semantic class

ROCK.

2. the head of the node has on Its property list

one of the semantic markers in MARKER.

3. for a partitive constructJon, e.g. "Which of

the tYpe/A samples" one of the above is true of the head

of the prepositional phrase.

4. if the head of the node Is a pronoun, one of the

above is true of its antecedant,

(NEWCLASS AVAR)

Both NEWCLASS and NEWPX are used In interpreting the

anaphoric pronoun "one", as inZ

"Which breccias contain alumlnum?"

"Which ones contain krypton?" "Ones", in this

example, refers to "breccias"t not to "breccias which

contain aluminum", After the interpreter finds the

D.42

Page _3

antecedant of "ones" (AVAR), NEWCLASS returns the class

of AVAR, modified to refer to the current variable QVAR.

The class of AVAR is gotten from its INTENSION property.

NEWPX returns the class restrlct_ons on the node, those

restrictions on AVeR not made by the verb phrase, In the

above case, NEWPX would not find any such restrictions.

If the first request were

"Which brecclas that are over WO_ million years

old contain aluminum?" NZWPX would return the

restrictions associated with the phrase "that are over

aZZ million years old".

(NEWFRAG NAME FRAG)

NEWFRAG is used to update the lls_ of tree fragments

TREEFRAGS. It sets NAME to FRAG and then adds it to

TREEFRAGS. For example,

(NEWFRAG $.OBJ.NPR (S ((VP ((NP ((NPR NIL I))))))).

(NEWPX AVAR)

See NEWCLASS.

(NEWRULE ARGS)

NEWRULE adds new semantic rules to the system and

indexes them properlY. (CAB ARGS) is the name of the

rule and (CDR ARGS) is its value.

(NO-MATCHES)

Nt-MATCHES is called by MATCHER if nonee of the

rules which might be used to interpret the current node

match it. NO-MATCHES gives the user the choice of

quittina or breaking, If ne breaks, ne can fiddle with

the semantic rules to see why non matched, then reset the

variable RULELIST, Upon nls return from the break,

MATCHER will be re-run on the current node and the new

set of rules in RULEL!ST. The MATCHER - NO-MATCHES cycle

can be repeated bY the user indefinitely many times.

(NXTVAR)

NXTVAR is the function which gets the next availaDle

variable name for use £n the quantlfiers during the

semantic interpretation. It uses variables cyclically

from a list called VAPIABLES.

(ODDP N)

ODDP is a predicate

integer.

which test if N is an odd

D.43

Page _

(ORMATCH TEMPLIST)

ORMATCH is a routine for matching OR'ed templates in

RMATCH. That is, when in Place of a single template in a

semantic rule, there Is an OR of several templates, then

ORMATCH is called to perform the matching of all of them.

It also provides for a standard DEFAULT interpretation as

the last component of an OR. It will take the default

interpretation if and only if there are no other matching

templates in the OR.

(PRED SEMFORM)

PRED iS One of three functions (PRED, QUANT, and

SSUNIONF) which are used in the rlght-hand sides of

semantic rules to indicate what is to happen to

quantifiers.

QUANT indicates

quantifier that is

constituent, with the

current node being

quantifier.

that the right-hand side is a

to be passed up to a higher

semantic _nterpretation of the

the variable assigned to that

PRED indicates that the right-hand side is a

predicate which is to "grab" any quantifiers passed up by

constituents -- that is, any such quanthfiers will be

treated aS quantifying the expression SEMFORM which is

the argument to PRED.

SSUNIONF indicates that the r_ght-hand side is a

successor function which is to "grab" some quantifiers,

but wrap others tightly around itself, The

interpretation of the current node is then one big

successor function over the sets given bY the quantifiers

and the original successor function. SSUNIONF is used to

distinguish the scope of "each" which is usually a

maximum, from those of "every, and "all" which generally

follow left to right order. For example, the rlght-hand

side of N:ANALYS!S is (SSUNIONF (DATALINE (WHQFILE (# 3 2

SSET))(# 3 2 SSET)(# _ 2)(# 5 2 SSET))), The

interpretation of the request "Howmany analyses of

Krypton are ther for all samples?" _s

(FOR THE X9 / (SEQL (NUMBER XIZ / (SSUNION X8 / (SEQ

SAMPLES) : T ; (DATALINE (WHOFILE X8) X8 OVERALL KR)

: T)) : T ; (PRINTOUT X9)),

There is a single answer for the entire set of samples.

The interpretation of "Howmany analyses of Krypton are

there for each sample?" is however:

(FOR EVERY X8 / (SEQ SAMPLES) : T ; (FOR THE X9 /

(SEQL (NDMBER X10 / (DATALINE (WHQFILE X8) X8

OVERALL KR) : T)) : T ; (PRINTOUT X9))).

There is one answer for each sample in the set. (The

D.44

Page _5

typeflag SSET indicates that if the node can be

interpreted as a set, it should be. "All sample" can be

interpreted as a setp "Each sample" can not be.)

(QUANT SEMFORM)

OUANT is a function used in the rlght-hand side of

semantic rules to indicate that SEMFORM is to be

interpreted as a quantifier. (See PRED.)

{QUIT)

QUIT effects a quick return to TALKER from

one is processing in the upper fork.

wherever

(REFLOC BHSFRAG RVECTOR)

REFLOC is a function used by SEMSUB in the semantic

interpreter to make up REFLIST$ for a given right-hand

side of a rule and a given vector of matches (RVECTOR).

If RHSFRAG (a fragment of %he rlght-hand side of the

rule) is a REF (i.e., an expression which refers to the

semantic interpretation of some constituent of the node

being interpreted)e then REFLOC returns the REFLIST for

that constituent. Otherwise _t scans RHSFRAG for

instances of _EF's. The REFLIST which is returned

consists of the pointer (SUBP) te t_,e constituent in the

tree to which the BEF refers (f_r this particular match

specified by RVECTOR), the REF itself (RHSFRAG), and the

interpretation of the node SUBP using the typeflag

specified bY the REF.

(REFP RHSFRAG)

REFP is a predicate which tests a fragment of a

right- hand side of a semantic rule to determine whether

it is a REF (i.e., whether it refers to a constituent of

the tree being interpreted whose semantic interpretation

is to be used as a part of the current interpretation).

This is true if the fraq- ment is e_ther a dotted pair of

integers, or a list beingging wlth the atom #.

(REFPTR RHSFRAG)

REFPTR is like REFP, except that it also returns a

pointer to the node in the tree to which the REF refers

(the matching pointer being obtained from the current

RVECTOR).

(REFQUANTS REFVECTOR)

REFQUANTS is a function whlcn gathers the

quantifiers from all of the REFLIST's in REFVECTOR into a

D.45

Page 46

sinqle quantifier "collar" wnlch Is to be wrapped around

the expression which it governs, It assumes that the

REFLIST's on REFVECTO_ have been sorted into the order in

which they are to occur, This sorting is accomplished bY

the function SORTREFS in a call from SEMSUB, REFOUANTS

also separates the type of quantifier arising from

"each", from those arisin_ from "every" and "all". It

does this so that "each" will nave a maximum scope,

independent of its surface structure location, "Each"
will produce a quantifier of the form

(FOR EVERY X / ...)

while the others will produce one of the form

(SSUNION X / o,.).

(REFSUB REFVECTOR)

REFSUB iS a function which takes the current value

of RHS (maintained by SEMSUB)_ substitutes the semantic

interpre- rations of its REF,s, and evaluates the result

to obtain the semantic interpretation of the current

node, REFSUBI actually performs the substitution, and

prior to the execution of the substltuted right-hand

side, REFQUANTSis used to construct the appropriate

quantifier "collar", The call to EVAL will result in

these quanti- fiefs being "grabbed" and wrapped around

the semantic interpretation of the current node if the

right-hand side of the rule (RM$) is embedded in a PRED;

if it is embedded in a QUANT, then the call to EVAL will

result in the quantifier being inserted into the "hole"

of the collar (substituted for DLT) and the semantic

interpretation of the current node w_ll be set to the

variable name associated with the quantifier,

(REFSUBI RHSFRAG REFVECTOR)

REFSUBI Performs the substltut_ons _n the RHS of a

semantic rule before it is evaluated by REFSUB. It

substitutes the current value of the varlable (QVAR) for

occurrences of the atom "X" when interpreting

restrictions on the range of quantifi- cation in

interpreting noun phrases, and substitutes the semantic

interpretations for REF's.

(REFSUB2 RHSFRAG _EFVECTOR)

REFSUB2 is used bY RE¥SUBI to wal_ across a sublist

of a RHS and spply REFSUBI recurs_velYo

(REFTYPE REF)

D.46

Page 47

k

REFTYPE is a function for extractlng the reftype of

a REF -- i.e. the tyPeflag that is to be used for

interpreting the node to which the _EF refers, For

dotted pairs, the REFTYPE is NIL, while for REF's that

begin with #, the reftype is the element of the list

which follows the numbers that denote the node to be

interpreted.

(RELTAG PLIST)

RELTAG is the function used by the semantic

interpreter for locating the relatlve pronoun of a

relative clause to be inter- preted and tagging that node

with the variable of qUantlf_cat_on (QYAR) associated

with the noun phrase which the relative clause modifies.

(RMATCH RULE P MODE)

RMATCH is the basic semantlc rule matching function.

It matches the single semantic rule RULE against the node

P with mode MODE, (unless MODE is reset bY the first

element of the rule _tse3f). It calls TEMPMATCH to match

each of the templates of the rule or ORMATCH to match

OR'ed qroups of templateS, and if a successful match is

found it calls SEMSUB for each possible way in which the

rule can match. If there are multiple matches, then it

combines them in the way indicated by NODE.

(RULES P TYPEFLAG MODE)

RULES is used bY INTERP to furnish the list of rules

to use in Interpretinq the node P, according to TYPEFLAG.

TYPEFLAG specifies what kind of interpretation is

required. The following kinds of interpretation are

recognized by BULSS:

I. ALL - for partitive constructlons determined bY

"all".

2. SET, SSET?, SSET - for nodes to be interpreted

as sets.

3. AVERAGE, MAXIMMM, MINIMUM, NUMBER, OLDEST - for

partitive constructions headed by one of these words.

_. REFS? - for nodes to be interpreted as requests

or topics.

5. REFS - for nodes to be interpreted as topics, if

possible.

6. S - for sentence nodes.

7. TOPIC - for nodes to be interpreted as topics.

8. NP - for interpreting the determiner structure

on noun phrases.

9. _RULES - for interpreting the class of noun

phrases.
IZ. RRULES - for interpreting the restrictions on

noun phrases.

D.47

Page _8

11. SRULES - for interpreting the main Verb of a

sentence. RULES sets the MODE of interpretation which is

then used bY RMATCH. RULES calls DRULEF for the llst of

DRULES to use in interpreting the determiner structure on

a noun phrase.

(SAMPLEP X)

SAMPLEP is a predicate which tests _f X has the form

of a sample according to LSNLIS conventions, that is, X

is of the form Syyyyy.

(SCOPEFINDER FORM CONTEXT)

SCOPEFINDER makes intension and scopevars entries on

the property lists of variables _n guantlfiers,

(SCOPEVARS X)

SCOPEVARS accumulates the closure of

of a variable.

the scopevars

(SEMCONJ CONJ SEMLIST)

SEMCONJ is the function which combines multiple

semantic interpretatlons with the conjunction CONJ, It

conjoins the $EM's of the interpretations under the

conjunction CONJ, and produces a quantifier Which is the

nexting of all of the quantifiers wiLich are associated

with the individual interpretations.

(SEMIANAPHOR ANAPHOR)

SEMIANAPHOR is used to resolve one type of Partial

anaphora: a pronoun modified by a prepositional phrase.

For example, "Give me analyses for krypton in brecclas."

"Give me those for magnesium" The antecedant of "those

for magnesium" is "analyses for magneslum in breccias".

SEMIANAPHOR finds the node dom_natlng "analyses for

krypton in brecclas" as the partial antecedant of

"those", replaces "for krypton, w_th -for magnesium,., and

calls for the relnterpre- ration of the new node,

(SEMNET NI N2)

SEMNET test whether NI and N2 are semantically

similar, e.g. they share semantic markers or they are

both samples or documents. S_MNET, at present, is only a

bare attempt at doing the sort of things that could be

done with a semantic network.

(SEMSU8 RHS RVECTOR)

D.48

Page _9

SEMSUB is the function which suDstitutes semantic

inter- pretations for their REF'S _n the rlght.hand sides

of semantic rules. It is the major dispatcher among the

functions REFLOC, SORTREFSp and REFSUB,

(SORTREFS REFLISTS P)

SORTREFS is the function which sorts REFLISTS into

the order in which the quant_flers associated with the

REF's are to be incorporated _n_o the interpretation --

namely in order of their lef_-£o-rlgnt position in the

structure P. This is accomplished by the function

SORTREFS1 which walks the tree P and adds REF's to the

list in the order in which it sees them.

(SORTREFSI REFLISTS P)

See SORTRZFS.

(SPROC P)

SPROC is called on the output of the Parser, P. It

clears TAGLIST before beginning and returns a list of

possible semantic interpretations of P. SPROC also calls

for the reorderlnq of the antecedant list ANTECEDANTS

followinq the interpretation of P.

CSSUNIONF SENFORM)

SSUNIONF is a function used in the right=hand side

of semantic rules to indicate that SEMFORM is a successor

function. (See PRED.)

(SUPERLATIVE N)

SUPERLATIVE tests whether the head of the node

numbered N is a superlative adjective. A superlative

adjective with a definite determiner is ParSed as a noun,

while its associated surface structure noun is made the

head of a dependant partitive construction, For example,

"the oldest sample" is parsed as if it were "the oldest

of the samples". MEM callS SUPERLATIVE on a node to see

whether its semantic properties should be gotten off the

head noun or the head of a partitive construction,

(SYNONYMS? HEAD TYPEFLAG)

SYNONYMS? is a help function called by RULES when it

cannot find any semantic rules to use In interpreting the

head noun or head verb of a node. It tells the user it

cannot understand the word and asks if it is a synonym of

one of the words it knows. If it _s, the system will get

the semantic rules off the synonym and continue,

D.49

Page 59

(TAG P TAGNAME VALUE)

TAG is the function whlch places tags o, the

TAGLIST. It associates with the node P the property

TAGNAME with the value VALUE,

(TENPMATCH TEMPLATE P)

TEMPMATCH is the semant%c interpretation function

which matches temDlates with nodes of the tree (it is

called by RMATCM and ORNATCH)o It calls the functions

TMATCM to Perform the tree matching of the tree fragment

with the node P, and CCHECK to check the semantic

conditions of the template for any resulting tree

matches. It also provides the results of a simulated

match in the case of a DEFAULT template.

(TERM TREELIST)

TERM is a function which returns the list of

"leaves" or "terminal nodes" of a l_st of tree structure

nodes (TREELIST). It does so by walking the tree

structure and gathering up the "leaves".

(TMATCH PLIST FLIST)

THATCH is the function which perZorms the Subtree

matching for the semantic interpreter (called by

TEMPMATCH). PLIST is a list of nodes on the tree which

are to be matched against the fragment nodes (from the

semantic rules) in the list FLIST, It returns a list of

all possible matches--each match being represented by a

vector (ALIST) of correspondences between numbered nodes

in the tree fragment and the nodes in the tree being

interpreted.

(USED? ADd)

USED? is a predicate wh_c_, tests whether the

adjective ADJ has been tagged bY MATCHER as Delng used in

the interpretation of some node,

D.50

Page 5_

III. RETRIEVAL FUNCTIONS

(ABOUT DOCUMENT TOPIC)

ABOUT is a predicate for a DOCUMENT

under one or more of the keyphraSes

example, the interpretation

being indexed

in TOPIC. For

(FOR EVERY X7 / DOCUMENT I (ABOUT X7 (OR (

FERROUS ZRON)

(AND (FERROUS)(IRON)))) ; {PRINTOUT X7))

retrieves all documents which have been indexed

"FERROUS IRON" or under both "FERROUS" and "IRON",

under

(AGE ARGS)

AGE can take two or three arguments, a sample

number, a radiometric clock, and a restart pointer. If

the clock is specified, AGE returns the age of the sample

as may have been measured by that radlometric clock.

Otherwise, AGE returns the age of the sample accordinq to

each of the radlometric clocks _n AGELTS, for which such

measurements have been made. AGE calls DATALINE to find

all the necessary age analyses. For example, (AGE (NPR.

X3 / (QUOTE St@Z71)) (OUOTE ,PB2_7) INDEX) will return the

first age analysis of sample I_Z71 by lead isotope dating

if INDEX is NIL, subsequent analyses otherwise.

CANALYSES FN GAZ)

ANALYSES is a successor function like DATALINE,

which returns, one bY one, all the chemical analyses in

all the files on FILEDIRECTORY, FN and GAZ are both

restart pointers, the first to the remaining analyses in

the current analysis file, the second to the remaining

files in FILEDIRECTORY. It is not currently used, but

could be, instead of DATALINE, in situations where it

would be more efficient. For example, in response to

"Give me all the analyses in your f11es."

(AROUNDVAL Q1 Q2)

AROUNDVAL is a predicate which tests whether Q1 is

within an engineer's approximation of Q2. That is, .9,Q2

< QI < 1.1.Q2. 01 and Q2 may be scalar quantities,

number-unit pairs or analyses. In the latter case, the

value of the analysis is fetched from the appropriate

file.

(ASSOCNEXT LISTV NTRY)

D.51

Page 52

ASSOCNEXT returns the tall of LISTV whose CAAR is

equal to NTRY. LISTV is a list of lists, ASSOCNEXT

differs from A$SOC in returning the whole tail and not

just the head of the tail. For example,

(ASSOCNEXT (QUOTE CPX)(QUOTE ((OVERALL , 2877)(CPX ,

290Z) (PLAG
2958)(''* . 3_17))))

((CPX 29ZZ)(PLAG , 2958)(*'* . 3017))
ASSOCNEXT iS called by DATALINE,

(kVERKGE *X* / CLASS : PX)

AVERAGE calculates the numerical average of the

members of CLASS which meet the requirements stated ih

PX. AVERAGE is used to compute average ages, average

concentrations and average ratios. For example, "What is

the average potassium / rubidium ratio in low-alkali

rocks?" is interpreted as

(FOR THE X1 / (SEQL (AVERAGE X2 / (SSUNION X3 / (SEQ

TYPEAS) :

T ; (RATIO (QUOTE K20) _QUOTE RB) X3 (QUOTE

OVERALL))) : T))

:T : (PRINTOUT XI)),

(AVGSTEP XI)

AVGSTEP is used bY AVERAGE to compute average

analyses (concentrations). Zt fetches the value of the

current analysis Xl, does any unlt conversion necessary_

and increments the accumulator with the value,

(BOOLGET X)

when the quantlfier function FOR is quantifying over

a set of documents (i,e. the CLASS in "DOCUMENT"), it

calls the function BOOLGET with X set to the restriction

on the range of qualification (1.e. the PX _erm in the

quantification). BOOLGET Searches the expression X for

all instances of the predicate ABOUT (which represents

the prediction of a document being about a topic) and

gathers up the corresponding Boolean combination of

topics. This is used as an argument to BOOLRET (after

being converted to conjunctive normal form) and is used

to enumerate the appropriate set of documents bY

performing the Boolean operations on the Znverted f11e

lists for the keyphrases of the topics.

(BOOLREQ CNF)

BOOLREQ converts a normal conjunctlve normal form

Boolean expression CNF into a modified form suitable for

BOOLRET, bY sorting negations to t_e end and raising

negations if necessary so that they are always components

D.52

Page 53

of an AND and not of an OR, The latter ls done in order

to provide a Boolean request which can always be done by

intersecting inverted files and never requires

constructinq the complement of an inverted file.

BOOLREQI performs the bu]k of th_S operation, NEGSORT

sorts the NOT,s to the ends of clausese and converts such

clauses to instances of the operator SDIFF (which

represents the operation of taking the set difference

between two Boolean expressions).

BOOLRET BOOLEXP)

BOOLRET is the function wblch performs the Boolean

operations indicated in BOOLEXP on the inverted file

lists of documents associated wlth the key phrases in

BOOLEXP. It returns a llst of all documents which

satisfy the Boolean expression.

(BUILDCA CA FLDNS)

BUILDCA is used when building tne lower fork to set

up the codearrays and do the approprlate coding, FLDN5

is a list of field names in the same order as their

corresponding code array in CA. Each member of FLDNS is

bound to a list of its field values to be coded.

(CHANGELINE ARGS)

CHANGELIMZ changes a slnqle field on each line

meeting the specificatiOnS g%ven ,n ARGS to a value also

specified in A_GS. The format of ARGS is <fieldname>

<new-value> <file> <old-Spec>., where file meetlng the

specifications in <o]d-spec>*. The order of

specifications must match the order of fields in a file

record. For example, (CHANGELINE ELT AL2Z3 APOLLOI1

Sl_08U OVERALL AL213) will change the value of every

AL2Z3 analysis of S]@08_ OVERALLWnich has been

incorrectly specified as an A1213 analysis. To change

the value of more than one field on a single line, one

should use EDITLINE instead.

(CHANGEILINE FN FIELD VALUE)

CHANGEILINE is called by CHANGELINE after CHANGELINE

has found a llne that meets the g_ven specifications. If

the file is not sorted on FIELD, CHANGILINE changes the

current value of FIELD to VALUE. Otherwise, CHANGEILINE

deletes the line and inserts the corrected line at the

end of the corresponding Patch f_le. The patch file has

the same name as the main file, with t_le extension PATCH,

e.g. APOLLOI1 and APOLLOII.PATCH. The argument FN is

(FILE . LINE-NUMBER).

D.53

Page 54

(CLEARMAP)

CLEARMAP is called by RETRIEVER to remap file pages

and reset the GAZETTEER after a request has been

serviced. In case the user inadvertently leaves the

lower fork via an interrupt, he can type EXECUTE() to run

CLEARMAP.

(CNF BOOLESP)

CNF is the function which converts Boolean

expressions to conjunctive normal form. The result of

CNF is a list of lists of Keyphrases or their negations.

Each element of the top level l_st is a dls3unction (OR)

of its contained phrasesp While the top level list is a

conjunction (AND) of these disjunctions, although the

AND's and OR's are implicit in the llst structure and do

not explicitly appear, BOOLBEQ uses the output of CNF to

construct its Boolean request,

CODE VAL AR¥)

CODE replaces the CODE and ENCODE functlons of the

previous LSNLIS system, CODE examlnes the CODES property

on VAL for the occurrence of AR¥, a code array in which

VAL has presumably been coded,

(COMBINATIONS LIST)

computes the cross product of a llst of lists, For

example, COMBINATIONS (((A B C))) = (B) (C)) COMBINATIONS

(((A B)(C DR)) = ((A C)(B C)(A D)(B DR) COMBINATIONS (((A

B)(C)(D E))) = ((a C D)(B C D) (A C E)(A C E))

(COMPLEMENT LITERAL)

This function returns the complement of the literal

key-phrase LITERAL. If LITERAL is negated, then

COMPLEMENT drops the negation@ otherwise, it adds a

negation. The function is used _n BOOLREQI.

(CONTAIN ,X, ,Y, ,Z,)

CONTAIN tests whether sample ,X, contains the phrase

or element ,¥, (if *Z* is NIL) or whether it contains

element ,Y, in phase ,Z_ (if *Z, _n non-NIL). If only an

element is specified, CONTAIN checks the ELTS Property on

X for ,Y,. If ,Y, is a Phase, CONTAIN checks the index

on ,X, since files are indexed on sample-phase pairs. If

both ,Y, and *Z, are givenw CONTAIN Issues a call to

DATALINE.

D.54

Page 55

(CONTAIN, SAMPLE ELPH ARGI ARG2)

CONTAIN' is used to answer "how much" questions and

to compare the average concentratlon of some mineral or

element in a sample against some given amount, Like

CONTAIN, CONTAIN' may be called wlth a mineral or an

element or an element within some phase of SAMPLE as

arguments. If a phase is speclfled, CONTAIN' takes four

argumentsj otherwise, it takes three. The last argument

to CONTAIN' is either (HOW), for a "how much" question,

or a test (E.G.(MORETHAN 5 PPM), (ATLEAST 3,5 PCT)). In

the first case, CONTAIN! returns the average

concentration, in the second, T or NIL, depending on

whether the average concentration passes or fails the

test. For example, "Which rocks have greater than 50 PPM

Nickel?" is interpreted as:

(FOR EVERY X3 / (SEQ VOLCANICS) ! (CONTAIN' X3

(QUOTE NIO)

(GREATERTHAN 5Z PPM)) ; (PRINTOUT X3))

(CONVERT QI.UI U2)

is a neat call to CONVERTU.

(CONVERTN N U1 U2)

sets up a call to CONVERTU on (N . UI) and U2.

(CONVERTU NUP UNIT DUMMY1 DUMMY2)

CCNVERTU converts the number-unit pair NUP to the

unit specified in UNIT. DUMMY1 and DUMMY2 are dummy

variables. CONVERTU is called by CONVERT, CONVEBTN and

UQUOTIENT.

(DATALINE ARGS)

ARGS is a list with the format <file><fldspec>,

<index>. DATALINE is a successor function which searches

a file for lines which meet the speclflcations given in

fldspec .. Any number of f_elds In a file re may be

specified, but they must follow the order of the fields

in a file record and be non-NIL. The /ormat of index ,

the restart Pointer, is ((<file> . <line#>) , filetop

). DATALINE does a binary search on sorted fields, and a

linear search on non-sorted fields. It takes advantage

of whatever indexing has been done on the file, recorded

on the property llst of the prJmarY sort key. For

example, (DATALIN_ APOLLOII Si_056 OVERALL AL2Z3 INDEX),

if _NDEX is NIL, w111 return a polnter to the first

OVERALL analysis of samp3es IZZ56 for AL203, in this case

((APOLLO11 . 7763) ,]32_8). If DATALINE is called

again for the next line meeting thJs description, it will

D.55

Page 56

be called with INDEX set to ((APOLLO11

132_8), the answer returned above.

7763)

(DECODENUM ARRAY CODE)

DECODENUM returns the decoded value

according to the code array ARRAY. For

DECODENUM (MARRII 27) returns $ILZCA.

of CODE

example,

(DELETELINE ARGS)

ARGS is allst with the format tile fldspec ,.

DELETELINE will delete all lines in file which meet the

description given in fldspec ,. For example, (DELETELINE

APPOLLOII SIZ%_3 CPX FEO) Will delete all CPX analyses of

sample IZZ03 for FEO, if there are any_ in the APOLLO11
file.

(DELETEILINE FN)

FN is the dotted pair (<f_le> . <line#>).

DELETEILINE inserts a deletion indlcator, 10%Z, in the

primary sort field of the l_ne indicated in FN.

DELETEILINE is called bY CHANGEILINE, DELETELINE and

EDITLINE.

(DO X)

calls for the evaluation of X. DO IS

INTERPRETER"S RESPONSE TO AN IMPERATIVE QUESTION.

THE

(DOCP X)

DOCP is a predicate for X being a document

(citation) number, i.e. having the form Dnn-nnn, where n

is any integer.

(DOCUMENT INDEX)

DOCUMENT is a successor function whlch, one bY onee

returns the document numbers known %o the system.

(EDITLINE FILE N)

EDITLINE allows the user to ma_e any number of

changes to llne N of file FILE. If the user has changed

the value of a field on which the file is sorted,

EDITLINE makes a new entry corresponding to the changed

line in the aDpropriate patch f_le. If an altered field

is not a sort keY, then the new value 3ust replaces the

old one in the original file.

D.56

Page 57

(ELT:LINE FN)

FN is the do,ted pair (<f_le> . <line#>).

ELT:LINE computes the entry in MAPARRA¥ corresponding to

the given file.line number pair. ELTILINE also sets the

value of FORMAT, the file format description, for its

calling functions FETCH, FETCHLINE, STORELINE and

STOREVAL.

(EXECUTE FORM)

EXECUTE is the functiOn which performs the execution

of query language expressions. It may be either of two

distinct functions LOCEX or REMEX which perform the

execution in the same (local) fork or in f a remote fork,

respectively. In either case, EXECUTE provides for the

opening of a file HITFILE An which the answer is to be

recorded and the maintenance of a counter COUNTwhich is

incremented by the functions which write information onto

HITFILE. When the execution is completed, EXECUTE closes

HITFILE, and if COUNT is not greater than 5 copies the

HITFILE to the teletype aS the answer. If COUNT is

greater than 5, then EXECUTE types a message giving the

number of hits and asking the user w_Lether he wants to

see them on the TELETYPE. (If not, he has the option of

listing HITFILE offllne or saving _ts value for later

listing.)

In the case of REMEX, wnlch is the way that the

LSNLIS system is currently running, the above procedure

is additiona!17 complicated bY the fact that the
retrieval compone,t in which the query language

expression is executed resides _n a complete separate

fork of the TENEX system. In this case, EXECUTEw writes

the query language expression into a buffer file QBUF,

and calls the LISP function RUNFORK to wak up the

retrieval fork. The retrieval fork then reads the

expression from QBUF and executes it as discussed above,

with the answers being written onto HITFILE. When the

execution is completed, the retrJevai fork writes the

value of COUNT into another file buffer ABUF, and returns

control to the language processing fork. At this point,

EXECUTE regains control, reads the value of COUNT FROM

ABUF, and proceeds to type the answers or notify the user

of the number of hits as adore.

(EXIST X)

EXIST is a predicate which is

every argument.

unlversally true ot

(EXPANDARRAY ARNAME)

D.57

Page 58

EXPANDARRAY expands a code array If it runs out of

space by recopying it into a larger array. EXPANDARRAY

is called bY CODE.

(FETCH FN FIELD)

FETCH returns the value in the fleld FIELD for a

given file- llne number Pair rN, FETCH saves the value

of FN in the global variable OLDFN, so that if the value

of FN doesn't change on sUbsequent calls, FETCH will not

have to call ELT:LINE to compute a new pointer into

MAPARRAY, The value of the pointer Is saved in OLDELT,

and the value of the file format in OLDFORMAT,

(FETCHLINE FN)

FETCHLINE returns a llst of the binary words making

up the record for the given file-llne number pair FN.

FETCHLINE is used bY LINEORDP to save time, since

alphanumeric order is matched in the A_OLLOll and

APOLLOIloPATCH files bY binary order.

(FETCHVAL FN FIELD)

FETCHVAL returns the value

file-line number pair FN. If

FETCHVAL calls CODE to decode it.

in FIELD for the

the value is encoded,

(FLTBOX LOC)

FLTBOX returns the boxed value of the quantity in

memory location LOC. FLTBOX is called by FETCH when the

field type of the field to be retrieved is FLT.

(FOR ARGS)

FOR performs quantification in the retrieval

component. FOR has been made an NLAMBDA so that the user

can specify a new quantifier in case the one produced bY

the interpretive component is incorrect. This will

happen often when there are many values of ,X, for which

a statement is true and the user has requested "the"

value, meaning the one.

(GETDOCS PHRASE)

GETDOCS returns the inverted file indexed on PHRASE

from the external file PHBASETABLE, It is called bY

BOOLRET.

(GETPAGE FILE PAGE)

D.58

Page 59

GETPAGE determines whether page PAGE of file FILE

has been mapped onto MAPARRA¥, If it has not, GETPAGE

calls PAGENAP tO do the mapping, The record of which

pages of which f_les are currently mapped onto MAPARRAY

is kept on the list GAZETTEER,

(GREATER Q1 Q2)

GREATER is a predicate which tests whether Q1 is

greater than Q2. Ol and Q2 may be scalar quantities,

number-unit Pairs, or analyses, If the latterp the value

of the analysis is fetched fro_ the appropriate file,

(INDEXF FILE)

INDEXF indexes all sample.phase combinations in a

coded chemical analysis file FILE, printing the size of

each sample-phase block for later decision on deeper

indexing. The index is Sectioned off by sample number,

and each section is maintained on the property list of

the corresponding sample, Under the property APOLLOll.

(INTERSECT LIST)

For

F)

takes the intersection of all the lists on LIST.

example, INTERSECT (((A C D F)(C F) (B F H C))) = (C

(LESSVAL Q1 Q2)

LESSVAL is a predicate which tests whether Q1 is

less than Q2. _n all other ways, _t resembles GREATER.

(LINEORDP FNI FN2)

Both FNI and FN2 are of the form (<file> . <line#>

). LINEORDP returns T if the first llne precedes the

second in alphanumeric order. ThlS version of LINEORDP

takes advantage of the fact that a cnemlcal analysis file

is sorted on all fields and only fields in the first two

words of each record. Given this, alphanumeric order

corresponds to binary order on the f_rst two words of the

record. Thus, LINEORDP can use LESSP on the first two

words of the record, rather than consecutive,

time-consuming checks on the sorted fields.

(LINE#OF X)

LINE#OF is intended to return the llne number of X,

In the current system, it is assumed that X is a llne

number, and LINE OF returns X.

D.59

Page 69

(LOADLOW LOADFILES)

LOADLOW is used when buildlng the lower fork to load

in all the negessarY functions and global variables. It

also sets up the array and values needed for page

mapping.

(LOCEX FORM)

LOCEX would be the executive program for executing

semantic interpretations in undivided retrieval system.

See EXECUTE for further details.

[MATCHLINES ARGS)

ARGS has the forma% <FILE><LINE ><FLDSPEC>..

FLDSPEC may have a value or be NIL, but there must be a

FLDSPEC for each f_eld in the file record. MATCHLINES

tests whether the qlven llne of the given file matches

the field specifications. MATCHLINES returns WORTHLESS

if the qiven llne would follow a l_ne with these speci-

fications in the file, ALMOST if the given line would

proceed it, and OK if the lines match. A match occurs if

the specification Js NIL or if the value of the

specification is the same as the value of the field on

the given line.

{MAXIMUM X / SAMPLESET : PX)

MAXIMUM calculates the maximum value over those

members of SAMPLESET which meet the conditions specified

in PX.

(MEMBER, INDIV CLASS)

MEMBER* _ests whether INDIV Is a memDer of CLASS.

It differs from MEMBER in that CLASS may be a variable

bound to an atom whose value %s a l_st_ or a llst itself.

Otherwise, MEMBER* returns an error message. MEMBER*

calls MEMBER.

(MINREAD INPUTFILE OUTPUTFILE)

MINREAD is a function to create a binary chemical

analysis file for the new data base from a L_Sp written

file for the old one. OUTPUTFILE must nave been opened

for I/O prior to the call to MINREAD.

(NEGSORT CLAUSE)

NEGSORT is a function used _n the Boolean request

generation to move neqated phrases to the end and convert

them to calls to SDIFF, the function which indlcates the

D.60

Page 61

set difference between two Boolean descriptions.

BOOLREQ for more details,

See

(NEWLINE ARGS)

ARGS has the format <file) <fldSpec> ,, NEWLINE

sets up successive calls to $TOREVAL to store the record

specified in fldspec * in the next empty record of file .

NEWLINE updates the property TOP on flle to one higher

than its previous value, and thls value is returned by

NEWLINE. For example,

(NEWLINE APOLLOII.PATCH SIZ_22 OVERALL AL2Z3 D7%-19_

0 PCT 7.1)

6

The order of <fldspec> * must follow the order of fields

in a record. NEWLINE is Called by EDZTLINE and MINREAD.

NEWLINE should be used otherwise only on unsorted files.

(NEXNUM INDEX)

NEXNUM finds the leftmost terminal element which is

also a number in the tree INDEX. NEXNUM is used by

DATALINE in searching the file index on a sample for the

start of the next samDle-phase block.

(NPR ARGS)

NPS is a variant of QUOTE. If ARGS have a special

significance i, the system, indicating a line number, a

citation, a specimen, a phase, or a constituent, NPR

returns the standard form. Otherwlse, NPR acts llke

QUOTE. For example,

(NPR SAMPLE IZZZ3)

SIZ003

(NPR LINE NUMBER IZ)

IZ

(NPR BERYLLIUM)

BE

(NPR, "X* / CLASS)

NPR. sets the value of *X* to tne value of CLASS.

It is used to associate a scope varlable with a proper

noun for referencing purposes. It is produced bY the

interpretive component for all proper nouns. For

example, (NPR, X7 / (QUOTE SiZ@56)).

(NUMBER ARGS)

counts the number of times the form ARGS IS TRUE.

NUMBER returns a one-place list containing the count, and

is used to answer "how manY" questions,

D.61

Page 62

(OLDEST ,X. / SAMPLESET : PX)

OLDEST calculates the average age of each sample in

SAMPLESET which meets the condltJons specified in PX, and

returns that sample which has the greatest average age.

OLDEST records its answer in the list DEFDESC, so that

the oldest member of SAMPLESET Reed only be calculated

once.

(OUTPUTLINE FN)

FN has the format (<file) . <line#>). OUTPUTLINE

is in general Printing function for f_le records which

gets the information about the record format and printing

format from the property list of the file name and prints

out the record accordinglY. OUTPUTLINE is called by

PRINTOUT and PRINTFILE.

(PAGEMAP MEMPAGE FILE FILEPAGE)

PAGEMAP maps page FILEPAGE of FILZ onto Page NENPAGZ

in the lower forK.

(PHRASENATCH PHRASE PHILE POS)

PHRASEMATCH tests whether the inverted file indexed

on PHRASE starts at position POS of the file PHILE, or

would start earlier in the file or later. PHRASEMATCH is

called bY GETDOCS to determine the next move in its

binar7 search.

(PRINTFILE FILE)

PRINTFILE takes the place of the functions POLD and

PNEW in the former LSNLIS system, to print, in readable

format, the binary files in the data base.

(PRINTLINE N)

The values to be printed by PRINTLINE are the values

in PRINTFIELDS. The values printed on the prior line by

PRINTLIN_ are stored in OLDPRINTFLDS. The printing of a

field is suppressed if its value is the same as the

former value, unless the field is a floating point

number, which always prints. N _s the number of fields

to be printed, and is present to make PRINTLINE more

general. In the current system, all binary files have

the same number of fle]ds and it corresponds to the

length of PRINTFIELDS.

(PRINTOUT *X*)

D.62

Page 6J

PRINTOUT prints out the answers to requests made to

the retrieval component and increments the varlable COUNT

maintained by RETRIEVER. PRINTOUT HAS SEVERAL OPTIONS.

If *X. represents the result ef a DATALINE computationw

PRINTOUT prints out the associated analysis, If *X* is

within the scope of any other variables, PRINTOUT prints

out the values of those variables _n addition, If ,X_

has any additional informat&on associated with It#

produced during the evaluation of the request, that

additional informatlon is printed out along with the

answer, If .X, is not a variable, PRINTOUT merely prints

out its value,

(RATIO ELTI ELT2 SN MIN POINT)

RATIO is a successor function which returns, one by

one, the ratios it computes of ELTI to ELT2 in the MIN

phase of sample SN. POINT is the restart pointer.

Ratios are only computed between analyses with the same

reference - Joe. done bY the same set of authors.

(REF* FN REFR)

REF* is a predicate which tests whether the

reference associated with the analysis FN Is equal to

REF. FN has the format (<file> . <llne#>).

(REFILEPHRASES INFILE OUTFILE)

REFILEPHRASES converts the set of inverted files on

INFILE into one, OUTFILE, suitable for binary search.

Inverted files on the same keyphrase are merged, and each

inverted file is bounded on both ends bY square brackets.

(REMAP MEMPAGE)

REMAP remaps Page MEMPAGE of the lower fork onto its

associated filePage.

(RETRIEVER)

RETRIEVER sets uD the lower fork of the two fork

LSNLIS system. It exits to the Exec with HALTFN so that

the lower fork can be saved, when the lower fork is

called by REMEX. it is entered in RETRIEVER following the

call to (HALTFN).

(SAMPLEP X)

SAMPLEP is a predicate for X being a sample number -

a string beginning with "S" and followed bY a five-diglt

number.

D.63

Page 6w

(SCOPEFINDER FORM CONTEXT)

makes INTENSION and SCOPEVARS entries on the

property lists of the varlableS in quantifiers.

SCOPEFINDER is used in determining correct anaphoric

referents.

(SEQ *L, ,I,)

SEQ is a successor function which enumerates the

members of a list. ,I, is %is restart pointer. SEQ

returns (CDR (EVAL *I,)) if ,I, _s non-NIL, Otherwise,

SEQ returns (EVAL ,L,). This value _s then used by SEQ's

calling function as Its restart pointer. The variable

AGAINFLG prevents SEQ from restartlnq JL, after *I, is

NIL.

(SZQL IL* "I*)

SEQL is equivalent to (SEQ (LIST..,)), It is

produced in the semantic component for single.membered

sets.

(SETLIST ,X, / CLASS : PX; QX)

SETLIST returns a list of the members oZ CLASS which

satisfy condition PX, if OX = T. Otherwise, SETLIST

returns QX aPPlied to each of those members, 5ETLIST is

similar to SETOF; however, it returns a list of its

answers, rather than each one in turn.

(SETOF ,X, / CLASS : PX ; QX POINT}

SETOF is a successor function which returns the

members of the class CLASS wnlch satgsfy PX, after having

applied Qx to them. POINT is the restart polnter.

(SORTNEW FILE)

SORTNEW does a bubble sort of the unsorted portion

of FIL_ into the sorted Portion. The boundaries of the

unsorted portion are the values of SORTTOP and TOP, both

on the property list of FILZ, SORTTOP is reset to TOP

after the file is sorted, SORTNEW is called by DATALINE.

(SSUNION ,X, / CLASS : PX ; OX INDEXO)

SSUNION is a successor function. For each member of

CLASS meetlnq the conditions in PX, QX is evaluated. QX

is either T or another successor functlon. INDEXO is a

restart pointer for both CLASS and QX.

D.64

Page 65

(STORELINE FILE LINE# LINE)

STORELINE inserts the binary record given in LINE on

line LINE of FILE. It is used by CHANGEILINE to save

time, instead of a series of STOREVALS, CHANGEILINE gets

the binary record with a call _o FETCHLINE,

(SUNION ARGS)

SUNION is a successor function whlch_ one by onew

enumerates all the members of all the sets listed in

ARGS.

(TABFORM X)

returns the standard form of X, aS It appears in the

mineral analysis data base,

(TABFORM O_THOPYROXENE)

OPX

(TAG* FN TAG)

TAG, is a predicate which test _f the value of the

tag field of FN is equal to TAG. FN has the form (

<file> . <line,>).

(TEST SENT)

calls for the evaluation of SENT, If SENT is

non-null, TEST types "YES". If null, TEST types "NO".

TEST is the function used to answer yes-no questions.

(UNADDPROP X Y Z)

UNADDPROP is the reverse of ADDPROP, It removes the

entry Z from the property Y on the atom X,

(UQUOTIENT NUP1 NUP2)

UQUOTIENT returns the quotient of the two

number-unit pairs, NUP] and NUP2, flrst performing any

unit conversion necessary.

(WHQFILE SN)

WHQFILE returns the chemical analysis file on which

the analyses of sample SN are stored, For example,

(WHQFILE (QUOTE SIZE17)) returns <WARNER>APOLLO11,

D.65

Appendix E.

THE ORGANIZATIONOF THE DICTIONARY

The following description is intended to serve two purposes:
first, to provide a generai picture of the dictionary, indicating

what types of information must be specified for lexical entries;

and second, to demonstrate the precise format in which this infor-
mation must be represented.

w¸

"I. An Overview

The dictionary entry for a given word is stored on its LISP

property list as a sequence of property-value pairs (see the appen-

dix for a formal specification of the syntax required in a defini-

tion. Usually the properties will be the names of lexical categories

(e.g. N, V, ADJ), indicating that the word can be a member of the

category, but three other properties are allowed: SUBSTITUTE,

COMPOUNDS, and FEATURES. SUBSTITUTE supplies a mechanism for map-

ping abbreviations and alternative spellings of a word into a single

form, which contains the full dictionary entry. If a word can be

the first word of an idiom or compound expression (e.g. "United" in

"United States"), then the property COMPOUNDS denotes the following

word in the compound and a standard form which will replace the

whole sequence when it is found in a string. Thus the pair

COMPOUNDS ((STATES UNITED-STATES)) on the property list of UNITED

would convert all occurrences of the sequence UNITED STATES into

the single word UNITED-STATES, which then must be entered separately

in the dictionary. The implementation of the lexical category

properties, SUBSTITUTE, and COMPOUNDS, all support the general

philosophy that the dictionary information for a number of related

items should be stored on only one standard form but should be

accessible by any of the items.

E.I

II. Lexical Categories

The lexical categories are the properties explicitly referenced

by the grammar and the parsing algorithm. When the grammar asks if

a word is in a particular lexical category, the dictionary look-up

routines provide a yes-no answer and, if yes, two kinds of informat-

ion: (i) the root form of the word, and (2) a set of inflectional

features. Thus if the grammar asks if BOOK is a noun, the answer

is "yes--with root BOOK and inflectional feature (NU SG)". For the

verb TALK the root would be TALK with inflectional features

(TNS PRESENT) and (PNCODE 3SG).

The value of the lexical category property encodes the root

and feature information in several ways (see Section VI). The most

transparent notation is simply a parenthesized sequence (a list)

whose first element is the root and whose succeeding elements are

the features. If the word has a number of different interpretations

within a single category (e.g. SAW as a verb), the value of the cate-

gory property is a list of root-feature lists, one for each interpre-

tation. If the value of the property is an atom, (a character-

sequence instead of a list), then the root features are supplied by

default dictionary routines: If the value is "*", then the word it-

self, is taken as its own root and the set of features is the empty

set. For any other atomic value, the root is still the word itself,

but a default set of features is provided, depending on the category

(e.g., nouns are marked as singular by default).

Atomic values have another side-effect: they specify the

morphological paradigm of which the word is the root. Thus for

verbs, the atomic value S-ED indicates that the third-person

singular is formed by adding an S, the past tense and past parti-

ciple result by adding ED, and the present participle is formed

with ING. With the inflectional paradigm encoded in this way, only

the root forms of regular verbs, nouns, adjectives, and adverbs

E.2

must be entered in the dictionary. Definitions for inflected

forms are constructed as needed by removing suffixes to obtain

a potential root and making sure that the potential root is in

the dictionary and is marked to allow the removal of that suffix.

If so, the inflected form is defined as having that root and fea-

tures determined by the suffix in a regular way.

Having outlined the general structure of definitions, we can

now look at the lexical categories in some detail. We distinguish
two kinds of lexical categories, open and closed. Open categories

are large, potentially infinite classes of words (such as nouns and

verbs) which will never all be in the dictionary. These classes

are quite productive, with new members arising almost daily, as
technology progresses. The closed categories are finite, and, for

the most part small, and they are not growing. These categories
include prepositions, determiners, conjunctions, and modals.

A. Open Category Properties.

N
NPR
V
ADJ
ADV

= noun (man, airplane, city)
= proper noun (John Smith, USAF)

= verb (walk, fly, see)

= adjective (tall, happy, green)

= adverb (quickly, suddenly, certainly)

B. Closed Category Properties

CONJ

PREP

PRO

DET

ORD

NEG

COMP =

OP =

QWORD =

QDET =

MODAL =

INTEGER=

= conjunction (and, or, but)

= preposition (to, for, over)

= pronoun (I, you, they)

= determiner (the, a, those)

= ordinal (first, second, last, final)

= negative (not)

comparative (more, less, greater)

operation (plus, times)

question noun (who, what, why)

question determiner (which, what)

modal verb (should, would, can)

integer (one, two, three)

_- E.3

III. Open Categories

A. N - Noun

The property N indicates that the word can be interpreted

as a common noun. Every noun is mapped into its root form and

supplied with an inflectional feature for number. This feature is

encoded as follows:

(NU SG) if this is a singular form

(NU PL) if this is a plural form (e.g. OXEN)

(NU SG/PL) if this form is considered both singular and plural

(e.g. FISH, SHEEP)

The property N should not have the value *; the feature (NU SG)

is supplied by default for other legal atomic values.

The atomic arguments specify how the plural, if any, is formed

The following atoms are recognized (the hyphens are required):

-S nouns with regular S plurals (e.g. BOOK, BOOKS, LIbLE, MULES)

-ES nouns with regular ES or IES (if the root ended in Y)

plurals (e.g. CHURCII, CHURCIIES, P()[_Y, PONIES)

_[ASS mass and abstract nouns which have no plural (e.g. WATER,

HEALT H)

IRR nouns whose plural form is irregular (e.g. DATUM, OX)

(note that the plural form must have a separate dictionary

entry)

The definitions given for the following words illustrate these

conventions:

BOOK (N -S)

HEALTH (N 5LASS)

OX (N IRR)

OXEN (N (OX (I_U PL)))

E.4

B. NPR - Proper Noun

Proper nouns have a very simple structure, since they do not

have inflectional forms or features. The basic entry for a proper

noun is (NPR *), although it is possible to use the root retrieving

routines to provide a SUBSTITUTE effect. Thus if JOSEPH were defined

as (NPR *), (NPR (JOSEPH)) and (SUBSTITUTE ((JOSEPH))) would be

equivalent definitions for JOE.

C. V - Verb

The inflectional structure of verbs is more complicated than

that of nouns. A verb is marked as a tensed form (present or past),

an infinitive, and/or a participle (present or past). In addition,

if the verb is marked as tensed, it must also be marked for person

and number. These features are specified in the following way:

(TNS PRESENT)

(TNS PAST)

(PRESPART T)

(PASTPART T)

(UNTENSED T)

(PNCODE 3SG)

(PNCODE X3S@)

(PNCODE ANY)

for tensed forms

for present participles

for past participles
for untensed infinitive forms

for third-person singular forms

for every thing except the third-person singular

for all person-number combinations

If the value of an inflectional feature is T, the T need not be

specified. Thus, the following abbreviations may be used where

appropriate: (PRESPART), (PASTPART), (UNTENSED). In addition, the

grammar has been designed so that a tensed verb that has no PNCODE

specified will be interpreted as if it has (PNCODE ANY) permitting

the elimination of this very common feature.

As for nouns, the atom * is not a permissible property value.

For other legal atomic values, the default features are

(TNS PRESENT) (PNCODE X3SG) (UNTENSED), which correspond to

E.5

the normal behavior of the infinitive _oot) form. The legal atomic
values are (note the absence of an initial hyphen):

S-D regular verbs which add S for the third-singular, D

for the past tense and past participle, and ING for

the present participle (e.g. INCLUDE, INCLUDES, INCLUDED,

INCLUDED, INCLUDING).

S-ED regular verbs like the above except that they add ED

for the past tense and past participle (e.g. J_PPEN,

HAPPENS, HAPPENED, HAPPENED, HAPPENING)

ES-ED the same as S-ED except that the third-singular is

formed with ES. Verbs that change Y to I and add ES

or ED are also included. (e.g. PASS, PASSES, PASSED,

PASSED, PASSING, STUDY, STUDIES, STUDIED, STUDIED,
STUDYING)

IRR infinitive forms of irregular verbs--all the other

forms must have separate entries. (e.g. GIVE, MAKE,
RUN)

Illustrative examples :

INCLUDE (V S-D)

HAPPEN (V S-ED)

GIVE (V IRR)

GAVE (V (GIVE (TNS PAST) (PNCODE ANY)))

SAW (V ((SEE (TNS PAST))

(SAW (TNS PRESENT) (PNCODE X3SG)

SAWED (V (SAW (TNS PAST)))

(UNTE_ISED))))

Notice that if the root of one verb and an inflected form of another

are homographs (i.e. they are spelled the same), the regular in-

flectional machinery cannot be used--all the forms of the homographic

root must be explicitly defined. There is one other restriction:

the features (UNTENSED) and (PASTPART) are mutually exclusive, so

that the few verbs whose infinitive and past participle are the same

must be handled specially, as illustrated below.

(RUN (V ((RUN (TNS PRESENT) (PNCODE X3SG) (UNTENSED))

(RUN (PASTPART))))

E.6

RUN is thus defined as an ambiguous verb whose two interpretations
have the same root but different features.

D. ADJ - Adjective

Ordinary adjectives in English do not have any features, but

many of them have inflected comparative and superlative forms.

_hese are marked by the features (COMPARATIVE T) and (SUPERLATIVE T),

which may be abbreviated (COMPARATIVE) and (SUPERLATIVE). Adjectives

which do not admit these inflections in a regular way are simply

marked as (ADJ *), for example, EXTREME and ESSENTIAL. Otherwise,

adjectives can have the atomic values

R-ST

ER-EST

if they form the comparative by adding R and the

superlative by adding ST (e.g. CLOSE, CLOSER, CLOSEST)

if they add ER and EST instead (e.g. PINK, PINKER, PINKEST)

Adjectives which change Y to I are also included.

These atomic values do not supply any default features for the root

form. Examples:

HAPPY

GOOD

BETTER

BEST

(ADJ ER-EST)

(ADJ *)

(ADJ (GOOD (COMPARATIVE)))

(ADJ (GOOD (SUPERLATIVE)))

It should be noted that nouns which can be used as modifiers need

not be categorized as adjectives, since the grammar recognizes noun-

noun modification.

E. ADV - Adverb

Like adjectives, adverbs can also be inflected for comparative

and superlative, but the root itself has no features. Thus, irregu-

lar adverbs or adverbs that do not have comparatives or superlatives

are marked (ADV *), while the regular forms use the same atomic value

codes (ER-EST and R-ST) as adjectives. Examples:

E.7

HARD
FAR
FURTHER

(ADV ER-EST)
(ADV *)
(ADV (FAR (COMPARATIVE)))

IV. S_ntactic Features

The property FEATURES is required in the definitions of root

forms to specify the syntactic behavior of the root and all its

inflected forms. At present, the grammar only examines FEATURES

on verbs so that the property need not appear on roots in other

categories. The value of FEATURES is a simple unordered list of

atoms, each one denoting a different characteristic. The features

which may be included for verbs are:

TRANS

INTRANS

INDOBJ

COPULA

PASS IVE

if the verb can be transitive (e.g. HIT, KICK)

if the verb can be intransitive (e.g. WALK, GO)

if the verb can take an indirect object

(e.g. GIVE, BUY, TELL)

if the verb can be a copular (i.e. can be followed

by a predicate adjective) (e.g. BE, SEEM, APPEAR)

if tile verb can be passivized (e.g. DISCOVER, FIND)

(Note: all PASSIVE verbs are TRANS, but not all

TRANS verbs are PASSIVE--e.g. COST)

Section VII contains a set of sentence frames which define these

verbal characteristics.

With one exception, if a feature does not appear in the list,

the grammar assumes that the verb does not have the characteristic

in question. Thus, if the root WALK is not marked INTRANS, the

grammar will not be able to parse the sentence "John walked." The

exception is that in the special case when the only features a verb

has are TRANS and PASSIVE, the whole FEATURES property may be ommitted.

The following two definitions for KICK are equivalent:

KICK (V S-ED FEATURES (PASSIVE TRANS))

KICK (V S-ED)

E.8

Since a large proportion of verbs have only these two features, this
convention reduces the total size of the dictionary. Examples

of complete dictionary entries are:

GIVE
GIVEN
GO
BECOME

(V IRR FEATURES (PASSIVE TRANS INDOBJ))
(V (GIVE (PASTPART)))
(V IRR FEATURES (INTRANS))
(V IRR FEATURES(COPULA))

V. SUBSTITUTE and COMPOUNDS

The properties SUBSTITUTE and COMPOUND_ change the words in

the sentence, before the grammar has even looked at them. If none

of the substitutions or compounds lead to a valid parse, the parser

restores the sentence to its original form. In this case, the

grammar examines the lexical category information in the word's defi-

nition; thus a definition can contain lexical category properties as

well as SUBSTITUTE and COMPOUNDS.

The value of SUBSTITUTE is a list of lists, each list being a

possible string to be substituted for the word. Whereas COMPOUNDS

causes a sequence of words to be replaced by a single word,

SUBSTITUTE can have the opposite effect: If SRO were define as

(SUBSTITUTE ((STANDING ROOM ONLY)), every occurrence of SRO in a

sentence would effectively lengthen the string to be parsed.

As indicated earlier, COMPOUNDS provides a means of mapping

idioms and compound expressions (sequences of words whose joint

meaning is not simply the composition of the meanings of the indi-

vidual words) into a single word representing the joint meaning.

Thus in the earlier example, the sequence UNITED STATLS was mapped

into the "word" UNITED-STATES, which was then explicitly defined.

The COMPOUNDS mechanism is general enough to handle arbitrarily

long sequences and sequences which are identical to the initial

E.9

segments of longer sequences (e.g. UNITED STATES and UNITED STATES
AIR FORCE). The various possibilities are expressed in the value

of the COMPOUNDSproperty.

The compounds value (defined in Section VI can be thought of
as a tree structure rooted in the word being defined (e.g. UNITED).

Non-terminal nodes in the tree specify intermediate words in the

compound expression, so that the non-terminal nodes encountered in

tracing a path in the tree down from the root denote the sequence
itself. The terminal node at the bottom of the path is the joint

meaning of the sequence. There is a terminal node under each non-
terminal to specify the joint meaning of subsequences that can occur

independently; if the terminal is the atom NIL, then the non-terminal

in question cannot be the last word in a sequence. The following

example shows the value for COMPOUNDS and the corresponding tree

structure necessary to recognize the expressions UNITED STATES,

UNITED STATES AIR FORCE, UNITED STATES N_VY, and UNITED FRUIT

COMPANY:

(UNITED COMPOUNDS ((STATES UNITED-STATES (AIR NIL (FORCE USAF))

(NAVY USN))

(FRUIT NIL (C_PANY UFC))))

UNITED

/
STATES FRUIT

UNITED-STATES AVY NIL COMPANY

l I
NIL FORCE USN UFC

I
USAF

Of course, UNITED-STATES, USAF, USN, and UFC must be defined

separately (probably as (NPR *)).

E.10

VI. Dictionarz Formats

The following is a formal specification of the syntax for

dictionary definitions. The notation is similar to that used

to describe context-free languages, except that nonterminal

symbols are enclosed in angle-brackets and alternations are rep-

resented by the vertical bar. The only addition is the Kleene

* operator, used to denote an arbitrarily (zero or more times)

repeatable constituent.

(i) <definition> +

(2) <pair>

(<definiens> <pair>*)

<lexical category><legical category value>

SUBSTITUTE <substitute value> I

FEATURES <feature value> I

COMPOUNDS < compounds value>

I
I

<root-feature list> I

(<root-feature list> *)

(<root> <inflectional feature> *)

+ (<inflectional feature name>

(3) <legical category> ÷ N I V I ADJ I ADV ...

(4) <legical category value> + <morphology code >

.. ua

<root-feature list>

<inflectional feature>

<inflectional-feature value>)

(5)

(6)

(7) <substitute value>

(8) <substitution>

(9) <feature value>

(10) <compounds value>

(ii) <tree>

(12) <result>

<lexical category>,

+ (<substitution> *)

÷ (<word> *)

(<feature> *)

(<tree> *)

(<word> <result> <tree> *

<word> I NIL

<morphology code>, <root>, <inflectional-

feature name>, <inflectional-feature value>, <word>, and <feature>

are all atoms as specified in the text. <definiens> is the word

being defined.

E •ii

VII. Frames for Syntactic Features

The following is a suggestive set of sentence frames for the

determination of the syntactic features which must be specified

in the definition of verbs. If a verb can fit into the open slot

in a frame, then the root form of the verb must be marked with the

syntactic feature (under the property FEATURES) with which the

frame is associated. It should be noted that for some verbs it

might be necessary to change the pronouns or substitute other noun-

phrases in the frame in order to arrive at meaningful sentences; if

a grammatical sentence results after these modifications, the verb

must still be marked with the feature in question.

A. TRANS:

B. INTRANS :

C. INDOBJ :

A verb must be marked TRANS if it can be immediately

followed by a direct object noun-phrase.

They it. (e.g. "hit" but not "go")

A verb is intransitive if it does not require a direct

object. (Note: a verb can be both TRANS and INTRANS,

if the direct object is optional.)

They . (e.g. "ran", but not "surprised")

A verb can take an indirect object and must be marked

INDOBJ if (i) it can be followed by two noun-phrases,

and (2) if interchanging the two noun-phrases and in-

serting the word "to" between them does not change the

meaning of the sentence.

They him it. (e.g. "gave_ but not "hit")

They it to him.

E.12

D. COPULA: A verb is a copula if it can be immediately followed

by an adjective which is predicated of the subject.

They tall. (e.g. "are_ but not "weigh")

E. PASSIVE: Transitive verbs which can be passivized must be

marked both TRANS and PASSIVE.

He them.

They were by him.
(e.g. "see (saw, seen)

but not "cost")

E.13

llI.

IV.

THE

Introduction

The LSNLIS Data

A. Overview

B. File Handling

Appendlx F

RETRIEVAL COMPONENT

Base

1.1

1.2 coding arrays

1.3 file indexing

2. Free-record-length

C. In-Core Data

Building the Lower Fork

Undating the Data Base

A. User Requests

I. AddJnn aralvses

2. Deleting analyses

3. Altering analyses

I. Fixed-recor_-]engtn-flles

file description %nformatlon

files

. Printin the analysis files

Adding New Data Fi_es

and Data Files

F,I

Io

THE RETRIEVAL COMPONENT

INTRODUCTION

In this appendix we wi3_ Hive a detailed description of

the general operation of the LSNLIS retrieval component and

of the data structures and storage techniques used in the

system. We mare no claims that the file storage and

accessing techniaues used are the best ones (or even good

ones) for our data base, but rather, we include this

appendix for the sake of giving a complete speclficatlon ot

the current system. Since the goals of the LSNLIS project

involved the lanuuage processing capability rather than file

structures and data management techn)ques, we have adopted,

wherever possible, techniques wnich are straight-forward and

convenient, and we have

facilities of TENEX such as the

random file I/O.

capltalgzed extensively on

page-mapping facility and

The c_rrent data base consists of two _iles compiled by

Dr. Jeffrey Warner at the Manned Spacecraft Center in

Houston. The first is a formatted, f_xed-record-length file

of chemical analysis data on the Apollo 11 samples and the

second is an inverted index by _eypnrases to a small

collection of documents. The former file is the data base

of primary interest slnce it contalns the specific factual

material to answer questions. The second file was a

peripheral effort in order to combine both fact retrieval

F.2

and document retrieval in the same natural language querying

facility. The current state of the keyphrase file would be

inadequate for an effective document retrieval system since

the keyphrases were or_ainally extracted by machine and

there is no standardization of vocabulary (or even of

inflection) in the file and we have not introduced any

compensating synonym facility.

_n the NASA LSNLIS, the retrieval component resides in

a separate fork of the TENEX tlme-sharlng system which we

will call the lower fork or retrieval fork. This fork is

under the control of the language processing fork. When the

semantic interpretation component has f_n_s_ed constructlng

the interpretation of a request, it calls a functzon EXECUTE

with this interpretation as its argument. EXECUTE passes

the interpretation to the retrieval

buffer file QBUF (for query buffer)

retrieval fork. When the retrieval

processing the _uerv, it will nave

fork by means ot a

and wakes up the

_ork has completed

written the answerfs)

onto a file H[TFILE, and it will then wr_te the number oZ

hits into a buffer fJie ABUF and return control to the upper

fork. The function EXECUTE then prlnts out the answer it

there are fewer than 5 n±ts, or notifies the user of the

n_mber of hits otherwise and asks l,_m whether he wishes to

see the answers. The function EXECUTE, t£_us serves as the

access port to the lower fork.

F.3

II. THE LSNLIS DATA BASE

A. OVERVIEW

In the first LSNLIS prototype demonstrated in Houston

in January, 1971, the entire data base was contalned in the

virtual core memory of the retrieval component, This

system, while adequate for the demonstration, placed a limit

of approximately IZ_K on the size of the data base that

could be stored due to the lSm_t of 256K for the total

retrieval component. The Apollo11 data which the system

then contained nearly f_lled that capacitY.

In the current prototype, the data base has been moved

from the virtual core memory to external disk file storage.

This facility provides access to any number of independent

disk each

data.

fixed

files uses both the page maPplng fac)llty

system and its random file I/O capab_llty.

files,

The current

and variable

of which may contain up to 256K words of

system contains conventions for both

record-length f_les. Accessing of the

ot the TENEX

Due to our use of the hardware page-mapplng facility in

TENEX and more detailed indexing, moving the chemical

analysis data base to external f_les has not hurt the

retrieval component's performance t_me. with the functlon

optimization that has accompanied this mapor change in the

retrieval component, the average retrieval time for a

request has actually been reduced. For example, the form

F.4

constructed from the request, "Give me cnromite analyses for

samples containing chromite.", now takes 11.5 seconds, on

the average, (828 conses), to execute, whereas previously it

took 2_ seconds (IZ25 conses). "Potassium / Rubidium ratios

for breccias" executes in 22 seconds (183_ conses), rather

than 28 seconds (65_ conses). (Part of the increase in

speed was due to the correction of a bug in the original

retrieval program which caused wasted searching to take

place.)

To avoid the nuisance of constant, time=consuming

updates to large files, we have carried over the "main table

- patch table" idea from the Previous system into the new

one. Each main file may nave associated with it a patch

file, to which updates nay be added sequentially.

Facilities are then provided for sorting the patch file into

the same order as the main file, merging tne two files and

resettina the hatch file to accept a new set of updates.

The retrieval function_ bare been

information in the patch file,

associated main file. In this

written

before

waY, new

corrected information is found first.

to search for

going on to its

information or

In the new system, we have again employed field

and record

the files.

line (or

coding

packing wherever posslble to reduce the size of

In the Apollol cnemlcal analysis table, each

record) contains seven f_elds (for the sample

F.5

number, phase, constituent, content, unlt, citation, and

tag), If each of these entries were represented bY one

machine word, then an entry would requgre at least seven

machine words of storaqe per record, However, the number of

different possibJe values for a given field is usually far

less than the number of distinct numbers that can occupy a

machine word (36 bits) or even a LISP pointer (18 bits).

THUS, we can save slanificant space by assigning eac_

possible value for a given field a unlque code number and

reservin_ for that fleld just enough space to hold the

largest such number (nlus pernaps some margln for growth),

Such field codina slan_ficantly reduces the number of bits

required for each field. Record packlng involves compacting

a record to fit into the minimum number of words possible.

Several fields may be assigned locat_ons within a single

word, rather than each fieJd reaulr_ng one or more words to

itself. In the current system, the only type of field whlch

still requires a full word to itself }s one which contains a

real number.

fields per

of storaae.

The records of the Apollo 11 flle, with 7

record, require only 3 macnlne words per record

A code numDer does not have to be decoded until

field of the record in which it is located is accessed.

decodinq process is a very simple one and does not

appreciably to the cost of retrieving the information.

saving in file space is immense,

the

The

add

The

The original symbolic file

F.6

of Apollo 11 chemical analysis %nformatlon has been reduced

by a factor of 3 by employing f_eld coding and record

packinq.

The above discussion of field coding and record Packing

applies only to the fixed record length flles of the system•

At present, the one free-record-length file that is in the

data base (the inverted fi)e of documents by key phrase) is

not bit packed in any way. Similar tecnniques could be

applied to reduce the storage for such variable length

records if space for their representation became critical.

The files currrentlv in the data base are (I) a

record file APOLLO11, (2) Its empty patch

APOLLOII.PATCH, (3) the inverted file of documents

13,2_8

file,

indexed

by key phrase, PHRASETABLE, and (_) one auxilliary file,

LOWFORF.SYSOUT, used for maintaining updates to the lower

fork.

S • FILE HANDLING

I. FIXED RECORD-LENGTH FILES

A process running under the TENEX system has a virtual

memory of 256K• divided into 512 word units or pages. A

user's files are also segmented into Pages, and it is on

these facts that the LSNLIS data handling is based. Given

information about a flle's organlzatlon, an algorithm can

F.7

compute the Page on which any record within that file is

located. It wall also note on what word, within that page,

the particular record starts. TENEX allows one to map pages

from an external file onto Pages within an ongoing process.

Within the lower fork (retrieval component), 10 Pages have

been reserved fo_ file page mapping. When a page of a file

is needed by the ret_zeva3 function, It is mapped onto one

of these IZ pages and is then available to all the standard

LISP functions as If it were part of core memory, A

gazetteer keeps track of which pages of which files are

Currently mapped onto the reserved area. _f a given file

page is already mapped onto the reserved area, it is

available for use immediately, and no further mapping must

be done in order to access it. (* I)

The following

implementation:

discussion details the current

1.1 FILE DESCBIPTION INFOBMATION

The names of the data files available to the system are

(, I) The me,pine area was reserved by setting up a LISP

array across 11 pages and freezing _t there via the LISP

MAK_SYS command. Once a Page from a file is mapped into the

lower fork, it is accessed by means of the standard LISP

array functions. Recently, a new facility, GETBLK, was

added to L_SP for assigning a block of storage guaranteed

not to move during qarbaae collections, just for the purpose

of such page mapping as we are doing,

F.8

on the list FILEDIRECTORY. FILEDIRECTOR¥ is a llst of

dotted pairs, the first member of each being a file name,

and the second being the current version. For examplee

FILEDIRECTORY is currently set toZ

((APOLLO11 . <WEBBER>APOLL011)

(APOLLO11.PATCH . <WEBBER>APOLLOI1.PATCH))

A user is not exmected to knoW the current version of any

file. If a name isn,t on FILEDIRECTORY, the system assumes

it has no further information about that name as a file, and

returns an error messaqe.

All the file

property

need to

require.

names on FILEDIRECTOR¥ have on their

lists the information that the retrieval functions

locate the file-record-f_eld comDination they

In addition, the Property list of each file name

contains the informatlon needed to print out that file in a

leaible manner. Each of these properties is detailed below,

with the property name being followed by a description oZ

its value and examples of its use:

TOP - the number of records in trle file, PluS one.

This value changes as new records are added to the

file.

SORTTOP - the number of sorted records at the top end

of the file. This val_e changes only when the

recently added, unsorted records at the bottom oZ

the file are sorted in w_tI_ t_e rest, using the

function SO_TFILE. At that t_me, SOBTTOP is reset

F.9

to TOP. This property _s only useful znformation

for Patch f_les; ma_n files are always assumed to

be sorted.

NREC/PAGE - the nun_ber of records per page o± the file.

This number must be an _nteger, as records are not

allowed to cross page boundaries in this

implementation. As there are 512 words per page,

NREC/PAG_ is eoua3 to the _nteger quotient of 512

and the length of the f_le record in words. The

APOLLO11 f_le has three word records, so NREC/PAGE

is 512/3 = 170.

FORMAT - the format of the file record - its length and

field specifications. The fgrst item in FORMAT is

the record lenoth an words, ans the remaining

it@ms are format spec_fJcatlons o± the flelds

within a record. A f_eld Js speclfled as:

(<fiel%na_><fieldtype><sortkeyflg><word-increment>

<mSb><Isb><codearraY>)

where <fieldtype> :=: FLT l CODE

<sortkeyflg> :=: T _ NIL

<wor_-_ncrement> :=: I i 2 i 3 l

<msb> :=: _ _ I _ 2 { ... I 35

<isb> :=: £ { I _ 2 I ,., I 35

INT i

<fieldtyPe> specJf_es whether the value

in the fie3d is a floating point number, an

integer or a code number. All a_phanumeric

F.IO

strings, as mentioned prevlouslY, have been

coded to save space,

<sortkeyflg> ind*cates whether the flle

is sorted on that field. Over the sorted

fields, the order of the sort is from left

to right.

(word-increment> indicates in which

word of the record the field is located.

<msb>,<isb> are the b_t boundaries of the

field, if it

only floating

occupy a full

does not occupy a full word.

polnts numbers currently

word. <codearray> is only

included for coded fields, The code number

in the field _s a pointer into this array,

which contains the uncoded, alphanumeric

information.

PRINTFORMAT - the wldth of eac,L field, as it is to be

Printed, one number Per f_eld. A fleld must be as

wide as its longest alphanumeric value.

For example, the proPertY list of the tile of Apollo 11

data, APOLLO11, is:

F. II

(APOLLO11
TOP

SORTTOP

NREC/PAGE

FORMAT

PRINTFORMAT

13248

13248

17Z

(3 (SN CODE T I Z 13
(MIN CODE T I 14

(ELT CODE T I 25

(REF CODE T 2 @

(TAG INT T 2 14

(UNIT CODE NIL 2 25 35

UARR11)

(VAL FLT NIL 3))

(8 8 I_ 10 I_ I_ I@ _))

SARR11)

24 MARR11)

35 EARR11)

13 RABBIt)

24)

I,2 CODING ARRAYS

Each file in the data base may have Its own code arrays

or share them with another file. SARR11, MARR11, EARR11,

RARR11 and UARR11 are the code arrays o± the sample,

mineral, element, reference and unit fields, respectively,

of the APOLLO11 file. All Apollo11 samples are coded via

the SARR11

array, etc.

more than

information is stored on the property llSt

val_e, under the property CODES. For example,

(SILICk

CODES ((MARR_'_ •

says that SILICA is coded 27 as a mineral

code arraY, all minerals via the MARR11 code

A value which occurs _n more than one field or

one file may be coaed v_a several arrays. This

of the field

27) (EARR11 . 135)))

_ield value and

!35 as an element field value.

A codinq array contains in its f;rst entry a pointer to

its first empty entrY. That entry will be used for the next

F.12

field value that needs to be Coded, Ti,e remaining non-empty

entries of the array point to the decoded field values. For

example, entry 27 of MABRII points to tt_e string SILICA.

The entries are accessed via the LISP array functions SETA

and ZLT.

The property llst of a coding array contains the

properties CODESFOR and SORTTOP. CODESFOR points back to a

list of values for which it is a coding array. This list is

used by the retrieval function FOR. BOth the codzng array

and this list are updated when new fJeld values come in.

For example,

(MARR11

CODESFOR PHASES)

When a new value is entered and coded zn MARR11, it

also appended to the list PHASES.

is

As the chemical analysis files are

sorted alphabetically and malntained an

values iF each codinq array have been coded

expected to be

thzs order, the

_n this order

too. In this way, the compacted, code@ files maintain the

alphabetic order. When new analyses with new field values

are added to a chemical analysis f_le, the code assigned to

the fiela value Ray not ref3ect its alphabetic order. The

property SORTTOP indicates the end of the ordered values

vithin the array,

F.13

An example of the comp3ete property llst

array is:

(MABR11

CODESFOR PHASES

SORTTOP 67),

on a coding

1.3 FILE INDEXING

To aid in locatinq information wjt_in a file, a tile is

indexed on its primary sort key. For each member of the

primary field, the index to the f%le for that member is

oiven on its property list. The property name is the name

of the file: thus, several files may be indexed on the same

primary sort _eys. (This mlght be useful it one were to

have some files of the samples by mission number and others

bY sample type.) The value of the property is the detailed

index to the file for that value of the primary field. This

index may vary in depth according to the size of the bloc_

delimited. (It is assumed that the file Is sorted, at least

on its initiai field.)

The index structure is:

<index> :=: (<fie3dindex>. <lastindex>)

<fiel_index> :=: (<fieldname> . <integer>) j

(<fieldname><Jndex>)

<lastindex> :=: (.J" , <_nte_er>)

F.14

Examples of a possible index to two samples in the

APOLLO11 file, whose primary sort key _s sample number, are:

(SI_Z93

APOLLO11 ((OVERALL . 19)(CPX o 1805

(GLASs . 88)(ILM . 212)(PLAG , 2135

(,** . 216)5)

($IZ@17

APOLLO11 ((OVERALL. 33_)(BOT . 65_)

(BOTTOM . 655)(CPX (AL2_3,

669)(CR2Z3 . 678)(FE0 .

(MNO , 7@0)(NA20 . 7_5) (0

7Z75(PB . 71@) (PB2@6/2@

715)[TH .

737))(ILM .

66_5 (CAO ,

682) (MGO . 6911

. 7_6)(018 .

• 711)(SIZ2 .

72_)(TI@2 . 726) (U , 735)(I** .

737)...(,** . 928)))

(While the APOLLO11 file is currently indexed only bY sample

- phase combination, the retrleval functions have all been

written for variable depth indexlnq.)

In the above examples, there is a polnter to the start

of the S10017-BOT blocK, containing the flve analyses ot

$I@Z17 for the BOT phase. The S10_17-CPX block however,

which contains 137 analyses, has been indexed further bY

element. Thus there Is

SIZ_I7-CPX-FEO block,

variable indexing is a

a pointer to the start of the

the S1_17-CPX-MGO block, etc. This

he_p in reducing the amo,lnt o_

information that must be searched to f_nd a given item.

2. FREE RECORD LENGTH FILES

We have changed our manner of _tandiing the inverted

lists of documents by keyp_rase _n tile new LS_LIS system.

Previously, these lists were Kept In core on the property

F.15

list of the word heading the phrase. For example, the

inverted file associated with "Quenched terrestrial basalts"

was on the property llst of "Quenched". (We hope there will

be no confusion because of our use of the word "file" in

both its information retrieval and its computer

implementation senses, we will try, however, to use the

ohrase "external file" to distingu_sr, t_,e computer sense.)

In order to accommodate larger numbers oZ larger inverted

files, it was decided to _eeD them on an external file and

access it with a binary search. The d_ctlonarY file in the

upper fork is also accessed in thls way.

In _he current system, there Is a single external fale

PHRASETABLE containing ai3 _he inverted flies o£ documents

bY keyphrase. Each inverted file _s a slngle record on this

external file. we assume a keyphrase wl±l Have only one

inverted file associated with it (I.e. w_ll occur only once

on the list). The external file is sorte_ on t_e keYphrases

that head the inverted files. To retrieve a record from the

external file, we do a blnary search on the file using

random file I/O commands recently Introduced into LISP.

while we have not done comparative tlming studies wit_

the previous inverte_ file retrieval functions, recent

timings of the function GETDOCS, whlcn re_urns the inverted

file for a phrase q_ven as input, J_ave produced the

followinn results:

F.16

phrase timing

ABRASION 5,3 sec,

ZONED CRYSTAL 6,4 sec°

QUENCHED TERRESTRIAL BASALTS U,9 sec°

MOLTEN SILICATE I.Z7 sec.

number of calls

for random I/O
19

26

16

2

This is of course much slower than the corresponding in-core

versions, but one cannot expect to _eep an index to a

realistic document collection in 256K of core. Some such

sacrifice in speed of retrieval is _nev_table.

C, IN-CORE DATA

In addition to the chemical analysls information stored

on external files, we also have a small amount of

information resident in core. Thls _nZormation includes

lists of sample types, samples by type, elements, isotopes,

minerals, rare-earths, phases and oxides, and for each

sample, on its property llst, a 1_st of the phases and a

list of the constituents which the

latter information is derived

files and represents for each

sample contains. This

from the chemlcal analysis

sample those Phases and

constituents for which analyses nave been made.

in-core information areatl7 _mproves the

performance in answerinq requests aboUt the

oxides, P_ases, etc. that a sample contains,

increasinq very

system.

All this

system's

elements,

without

much the amount of memory required bY the

For each sample, its list of constituents is on the

F.17

property ELTS on its property 1}st. The phases that a

sample contains are found on the property whose name is the

same as the file to which the sample belongs. For exalnple,

the phases of SIZZq7 can be found under the Property

APOLLO1 i. This propertY, aS was mentionea in the previous

section, is also the _ndex to the file bY sample - phase

pair. It is also used to see what phases the sample

contains. Both of these properties are put on the property

list of each sample by the function INDEXF when it

constructs the sample - phase index of the tile,

[SI@018

CODES ((SARR11 . 6))

APOLLO11 ((OVERALL 923)
(CPy 1_811

(GLASS . I_g3)

(ILM . 1173)

(PLAG . 1185)

(*** . 1196))

ELTS (AL203 AL26 AU BA BE CAO CE CL CO C056 CR203 CU DY EB EU

FEO GA GD HF HO IN K20 LA LI LU MGO MNO MN5_ NA20

NA22 NB ND NZO 0 POSITRON PR P205 RB RB87/SR8 S SC

SCh6 SZ02 SM S_ SR87/86 TA TB TH TI02 U V Y YB ZN ZR)

III. BUILDING THE LONER FORK AND DATA FILES

The following sequence of instructzons was

build the lower fork and convert the LSNLIS

analyses file for Apollo I; into a coded file and

used to

chemical

reformat

the LSNLTS set of inverted files (, 2). (The external files

are independent. If anythinq shoilld happen to the chemical

analysis or keYphrase flies, they maY be reload or recreated

F.18

without affecting the lower fork. The chemical analysis

file does not have to be relndexed. I_ anything should

happen to the lower fork, neither of the data files needs to

be redone. Only the property l_st _nformation for the

chemical analysis file and its indexing must be restored,)

I. eLISP

2. _LOAD(<WEBBER>LOADLOW)

3. _(LOADLOW LOADFILES) LOADLOW w11i call for the

loading Of all the function and variable files

needed in the lower _ork, It will also set up all

the global variables needed for page mappinq.

_. _(BUILDCA CODZARRAYS FIELDNAMES) SUILDCA will set up

the code arrays for the APOLLO11 file listed in

CODEARRAYS and code the appropriate field values,

for the lists _n FIELDNAMES, into the arrays.

(' 2) The facility for getting the JFN of a file from within

LISP has not been implemented yet at the time of this

report. Because of this, the followln_ additional set ot

instructions must be performed before loading the first

file:

_LISPX

BBN L_SP.10 03-_9-72 ...

I_DDT()

@DDT

FSCH=[_LISP$:FSCH]I2_Z6

,C

_REE

2_PUT(FSCH COREVAL 12_Z60)

5126

(WHATEVER NUMBER IS RETURNED FROM TYPING "FSCH .='', SHOULD B_

USED IN THE PUT COMMAND, FOLLOWED BY A "Q", INDICATING THE

NUMBER IS IN OCTAL.)

F.19

•

•

MINREAD(<WOODS>MINTABLE

creates a compacted,

Symbolic (i.e. printable)

_INDEXF(,WEBBER>APOLL011)

chemical analysis file by

(N.B. Although

variable depth indexing, we found we

to index beyond the second level,

phase), for reasonable efficiencY.

_E_FILEPHBASES(<WOODS>PHRASETABLE

<WEBBER>PHRASETABLE) REFILEPHRASES

LSNLIS set of inverted files on the

<WOODS>PHPASETABLE into one sultable

search•

,C

@SSAVE (PAGES FROM)_ TO 777 (ON)

_CONTIN[TE

MAKESY5 (LOWFORK,SAV)

MINREAD<WEBBER>APOLL011)

blnarY-coded file from a

cnemlcal analysis file.

INDEXF indexes a coded

sample-phase combination.

the retrieval functions accept

dld not need

(i.e. the

converts the

external file

_or binary

LOWFORK.SSAV

This firal seouence of instructions sets up the

fork for use by the upper forK.

lower

IV. UPDATING THE DATA BASE

A. USeR B_IQUESTS

F.20

In addition to its retrieval fac_llt%es, LSNL_S has

facilities which allow the user to alter the data base ot

chemical analysis information. These facll_tles allow him

to add and delete analyses_ to change the value of one or

more f_elds wlthin a single analysis, and to print

chemical aDalysis files, all us;ng natural

althouah with some restrictions.

out the

language,

As the main chemical analysts f_ies are in alphanumeric

order and must remain so, all c|,anqes _n analyses which

would upset this order cause the analys_s in guestion to be

eleted fro the main fi_e an_ put _n its altered _orm in

the corresDu_dir_ _atch file. Tn_S el_minates a paintui

reshuffi_nc of the maln file whenever an up,ate is made. At

a later _ate. the main file and t;:e patch fiie may be

merqed, and the patch fi3e cleareS for new entr_es, thus

combinzno ease of maintenance wltn efficient searchi[g.

As far as the user is concerned, t_,ere is onJy one f_le

for each mission. He does not need to know a_cut the

main-fiie / patch-file Cichotomy. Hence, when _e v_r ts to

specify afditiots to t:_e analyses for a glVen _lss_c[, he

cniy neec specify the maln file. Deletions ant c_arges

however car be made to all the f%les for a mission.

S::_ce c_anges made to the :ata paso may ais: change

_'a!ues in the lower fork, the currency of the lower fork

must else be ma:nta_ned. This :s done usinc t_e LISP

F.21

function SYSOUT, whzch will save t,_e pages on which these

chances were made on a file• Whenever a new entry is made

in a co_ing array using the function CODE, or a new file is

sorted using SORTNEW, the command:

(SYSOUT (QUOTE <WARNER>LOWFORK.SYSOUT))

is executed automaticallY. At the start of a user session,

this file is automaticai!y overlaid over the lower fork,

brincinq it up to date.

I. ADDING ANALYSES

ways:

The user can add a new analysls to a f_le £n one of two

n • *.(ADDLINE (' SI_3 OVERALL D_ 2_.7 PPZ

D7@-22_ Z) to APOLLOqq)

..(ADD THE LINE ($I_0_3, OVERALL, DY, 2_.7,

PPil, D7_-22_, 8} to APOLLO11)

(The English here, aS might be expected, is somewhat

constrained. It is difficult thoug_ to imagine what the

casual fnrm for such a request might De.)

The user can say ADDLINE or ADD, followed by a list of

the field values enclosed in parentheses, preceded by an

up-arrow, as in example A., mentioning the _ile to which the

analysis should be added. (The up arrow at the beginning ot

a list _s our analog of underlining a phrase. _t makes the

remainder of the list into a proper noun.) Thls is the first

F.22

way of addin_ an analysAs.

The second way of adding an analysJs involves the user

saying ADD, as in example B. (when the line contents are

" the values of theindicated by a phrase "the 3ine ... ,

fields should be separated by commas, and no up-arrow should

be used.) Again the file to which the analysis should be

added must be mentioned,

Both of these requests, When executed, return the llne

number (record number) in tne patc_ flle of the new

analysis. For example:

F.23

SENTENCE:
(ADD (_ $I_Z3 OVERALL DY 2_.9 PPM D7M-675 _) TO APOLLO11)

PTIMING:

1095 CORSES

5,519 SECCNDS

PARSINGS:

S IMP

NP PRO YOU

AUX TNS PRESENT

Vp V ADD

NP DET NIL

NPR 51_@B3

OVERALL

DY

2U.9

PPfl

D7_-675

NU SG

PP PREP TO

NP bET NIL

NPR APOLLO11

_U SG

ITIMING:

5_! CONSES

2.366 SECONDS

INTERPRETATIONS :

(DO (APPLY (FUNCT-_ON pRE.':EWLINE) (QUOEE ((NPR, XI / (QUOTE

APOLLO II))

7 •$I@_. _ OVERALL DY 2U q ppM D7_-675 _))))

FXECUTING

5

T

2. DELE:TING ANALYSES

To delete a line from any of the chemical analysis

files, the user can e_ther specify the llne number and flle

name of the line he wlsheS to _elete, as _n:

**(DELET? LINE 17 OF APOLLO!I)

or describe the analysis contained on tzLe llne, as in:

,,(DELETE THZ OVERALL A_ALYSIS OF AL26 FOR 5100_2).

F.24

using the second method, the User need not specify the

name, as it is obtainable from the sample number,

file

However, using the second method, the user faces the

problem of potential ambiguitY: there may be several overall

analyses of A126 for S10802. He may specify the analysis

further by giving tag and reference numbers, but the

possibility of amblguity still exists. Because the user has

specified "the analysis", he seems to believe there is a

unique referent _or his description. If there is then more

than one analysis satisfying his description, the retrieval

component will tell hlm so, and how many. At this point,

the user may specify a13, one, the ftrst or whichever ot

them he chooses to be deleted.

To avoid this ambiguitY, the user may nave first

requested to get the exact Sine number(s) o_ the analysis or

analyses he wished to delete, as by:

• _(WHAT ARE THE OVERALL ANALYSES OF AL26 FOR

SlZOZ2)

3. ALTERING ANALYSES

The User is also given the ability to make natural

language requests for alteration of one or more analyses

within a file. He can get at an analysis in one of two

ways: by giving the file name and llne number of the

analysis in a call to EDIT, as in!

F.25

• ,(EDIT LINE 173 OF APOLLO11)

or bY providing a description of the l%ne or

changed and the type of change, as _n:

,,(CHANGE THE ELEMENT IN ALL AL2@3 ANALYSES TO

AL2Z3).

lines to be

Using the first method, he can make as many changes as

he wishes, bUt to only one line, Uslng the second methodp

he can make only one specific c_ange, but to as many lines

as he wants.

If the user chooses the _irst method, the machine will

respon_ by printing ol]t the

APOLLOI1 file in the order:

referencew tag, _nitj content.

analys_s on line 173 of the

samplep phase, constituent#

To change any field, he can

specify its position (samPle = i, phase = 2, etc)p followed

bY the new vaJue. For example, the above request to EDIT

would nroduce

(S!_003 OVERALL .K/AB D7@-2ul M _.Y.3900,0)

EDIT

GLASS).

3B5_.8).

typing

_o chan_e the phase, the user mjqr_t say (2 CPX) or (2

To chanae the content, the user might say (7

He can insoect the current result at any point by

p. When he is finished, he can tYPe OK. If a field

on which the ana]ysls file is sorted ILas been changed durlng

the editlna, the system deletes the or_glnal llne and adds a

F.26

coPY of the altered llne to the

patch file. Otherwise, it

chanaes to the orlqlnal]ine.

edit lines

still hold.)

end of tne corresponding

simply makes the indicated

(Of course, the user can also

in the patch fi_e, but the above considerations

The following is complete example of a user requesting

a change in the Apollo11 patch file. T_e system returns at

the end of executing the request the llne number of the

original line if no recopying was necessarY, the line number

of the new line in the patch file, _f the llne was copied.

F.27

SENTENCE:
(EDIT LINE 3 OF APOLLOII.PATCH)

PTIMING:

971CONSES

5.669 SECONDS

PARSINGS:

S IMP

NP PRO YOU

AUX TNS PRFSENT

Vp V EDIT

NP PET NIL

NPR LINE

3

_]U SG

PP PPEP OF

NP DET NIL

NP_ APOLLOII.PATCH

NU SG

ITIMING:

_2 CONSES

2._35 SECONDS

INTERPRETATIONS:

(DO (EDITLINE (NP_, X2 / (QUOTE APOLLO_I.PATCH)) (QUOTE 3)))

BBN LISP-I? 03-_9-72 ...

EXECUTING

(SI_5S CP× SI02 D7Z-212 _ NIL Ifl.9)

EDIT

*(7 !3.2)

2*OK

_. P_INTI_:G FILES

The chemical analysls fi_es, being DinarY _iles, are

no_ printable (%hat is, comprehendable w_len printed) bY the

TENEY e×ecutive command LIST. However, the user can reques_

a file to Pe expanded, decoded, and printed by saying

,,(PRINT _POLL011) or ,,(PRINTOUT APOLLOI_.PATCH)

mat is. "erint" or "printout", followed Dy t_e name of the

file _e vlshes to have printed.

F.28

The following is an example of the adore request:

SENTENCE:
(PRINTOUT APOLLO11.PATCHl
PTIMTNG:

352 CONSES

1.8_9 SECONDS

PARSINGS:

S IMP

NP PRO YOU

AUX TNS PRESENT

VP V PRINTOUT

NP DET NIL

NPR APOLLOI1.PATCH

NU SG

ITIMING:

_66 CONSES

2.159 SECONDS

INTERPRETATIONS:

(DO (PRINTFILE (NPRI X5 / (QUOTS APOLLOI1,PATCH))))

EXECUTING

! SI@@_3

2 tm_8

3 SI_058

u SI_Z57

T

OVERALL DY 2_.7 PPN D7_-220

2U.7

CPX SI02 13.2 NIL D7Z-212

MNO 8.8 D7_-2_5

B. ADDING NEW DATA FILES

For each new chemical analysis fgle to be added to the

data base, the followlng additlonal znformation must be

stored. (We shall use a hypotnetlcal file of Apollo 12 data

as an example, and assume both the or_glnal LSNLI5 flle, say

MINTABLEI2, and the code_ file are to reside on the file

directory <wARNER> , This is the only time the user need

know the current verslon (i.e. the d_rectory location) ot

the file.

I. _RUN LOWFORK.SSAV

F.29

•

5.

6,

7.

@.

9.

_SETQQ(APOLLO12 A

If any new code a

the file:

_SETQQ(CA12 ("li

_SETQQ(FLDNM12 (

order as cod

bound to

possible in

_BUILDCA (CA12 FL

Add APOLLO12 to F

_SETQ(FILEDIBECTO

(APOLLO12 .

FILEDIRECTOR

Build the Dropert

previous section

incl_Ided.

If an empty patch

to be created con

be repeated for

necessary to crea

needed.

Convert iSNLIS fi

co4ed file:

MINREAD (<WARNER>

Index the latter

INDEXF(<WA_NER>AP

Do any further in

Reset up the lowe

see step 8 of the

POLLO12)

trays are to be created for

st of new code arrays"))

"list of field names in same

e arrays• Each name should be

a l%st containing the values

the fleld,"))

DNM12)

ILEDIRECTORY:

RY (CONS (QUOTE

<WARNER>APOLLO12))

x))
Y list for APOLLO12. See

for the properties to be

file for the new main file is

currently, steps _ and 5 should

the patch file, It is really not

te the patc,: file until it is

3e <WARNER>MINTABLE12 into a

MINTABLE12 <WABNER>APOLLO12)

file by sample-phase comblnation:

OLLOI2)

deXinq thought necessary,

r fork with the new Information;

previous sequence,

F.30

APPENDIX G

Examples

The following examples illustrate a variety of the

types of questions that the system can handle. They were

run with a setting of flags which prints out the parse tree
and the times involved in parsing and semantic interpretation

as well as the resulting semantic interpretation and the

answer. The parse times include the time required to access

dictionary entries from external files when words are encountered

that are not already in core (approx 1 sec. per word) as well
as a considerable fluctuation in system overhead due to paging,

which de_ends on system load at the time the example was run
(ti_es can fluctuate within a factor of four due to variations

in system load). Since the examples were run at various times

of day, and with varying numbers of words to be looked up from

the external dictionary files, cross comparisons of times

between sentences in this sample are meaningless, and the times
themselves can give only a rough order of magnitude. The same

system run in 256K of real core instead of virtual core would

run much faster.

G.I

SENTENCE:
(WHAT IS TH_ AVERAGECOMPOSITION OF OLIVINE)
PTIHIN9:

!168 CONSES

_,9 SECONDS

PARSINGS:

so

NP DET TH_

N AVERAGE

NU SG

PP PREP OF

NP DET NIL

N COMPOSITION

NU PL

PP PREP OF

NP DET NIL

N OLIVINE

NU SG

AUX TNS PRESENT

VP V BE

NP DET WHQ

!_ THING

_U SG/PL

ITIMING:

2285 CONSES

9,877 SECONDS

INTERPRETATIONS:

(FOR EVEPY X9 / (SEQ MAJORELTS) : T ; (FOR THE X_ / (SEQL (AVERAGE

_5 / (SSUNIO_I X6 / (SEQ SAMPLES) : T ; (DATALINE (WHQFILE X6) X6 (NPR*

X7 / (OUOTT LIV)) X8)) : T)) : T ; (PRINTOUT X_)))

SI02

TI02

AL203

FE203

FEO

MNO

M$O

CAO

_20

_:A20

,L

(36.q3518 . PCT)

(. 15aU%_9 PCT)

(.1236187 , PCT)

(28.97_9 , PZT)

(._USSSu3 , PCT)

(33.82u87 . PCT)

(. _j93_21 . PCT)

I_.Z . PCT)

{.13_!333 . PCT)

G.2

SENTENCE:

(WHAT IS THE AVERAGE PLAGIOCLASE CONTENT IN CRYSTALLINE ROCKS)

PTIMING:

•L396 CONSES

6,85 SECONDS

PARSINGS:

SQ
NP DET THE

N AVERAGE

NU SG

PP PREP OF

NP DET NIL

ADJ NP N PLAGIOCLASE

N CONTENT

NU PL

PP PREP IN

NP DET NIL

ADJ CRYSTALLINE

N ROCK

NU PL

AUX TNS PRESENT

VP V BE

NP DET WHQ

N THING

NU SG/PL

ITIMING:

2Z83 CONSES

_0.925 SECONDS

INTERPRETATIONS:

(FOR THE X10 / (SEQL (AVERAGE X11 / (SSUNION X12 / (SEQ VOLCANICS)

: T ; IDATALINE (WHQFILE XI2) X12 OVERALL (NPR, X13 / (QUOTE PLAG))))

: T)) : T ; (PRINTOUT X10))

(26.Z2778 . *,,)
,L

G.3

SENTENCE:

(WHAT IS THE AVERAGE CONCENTRATION OF ALUMINUM IN EACH BRECCIA)

PTIMING:

1256 CONSES

_,925 SECCNDS

PARSI_IGS:

sO

NP DET THE

N AVERAGE

NU SG

PP PREP OF

NP DET NT_

N CONCENTRATION

NU PL

PP PREP OF

Np DET NIL

N ALUMINUM

NU SG

pP PREP IN

NP DET EACH

N BRECCIA

NU SG

AUX TNS PRESENT

VF V BE

NP DET wHO

_ THING

NU SG/PL

ITIMING:

2223 CONSES

Q,g28 SECONDS

INTERPRETATIONS:

(FOR EVERY X17 / (5EO TYPECS) : T ; (FOR THE X15 / (SEQL (AVERAGE

X16 / (DATALINE (WMQFILE X 7) X17 (NPR* X18 / (QUOTE OVERALL)) (NPB*

X19 / (QtTCT_ AL203))) : T)) : T ; (PRINTOUT X15)))

12._8526 . PCT)

12.8Z726 . PCT)

_2.R297 , PCT)

17.a832_ . PCT

I].?22_8 . PCT

!P.56518 . PCT

_ !.q2593 . PCT

12.q)_57 . PCT

!3.;43755 PCT

i]._:i5357 . PCT

]_.a777 . PCT)

13._g92 . PCY)

_3. _9335 . PCT)

I_.18727 . PCT)

1%.v9135 . PCT)

13.aB23 , PCT)

a.36@2 , PCT)

!_._a362 . PCT)

G.4

SENTE,_=

(LIST MODkL PLAG ANALYSES FOR LUNAR SAMPLES)

PTIMING:

,_39 CONSES

7.a16 SEC2NDS

PARSINGS:

S IMP

NP PRO YOU

AUX TNS PRESENT

VP V LTST

NP DET NIL

ADJ MODAL

LDJ 14p N PLAG

N ANALYSIS

'_U PL

PP PREP FOR

NP DET NIL

AD,I LUNAR

N SAMPLE

NU PL

ITIMI>:G:

659 CONSES

INTTFPRETATIONS:

(DO (FOR GEl: XI_ / (SSUNION X]5 / (SEQ SAMPLES) : T ; (DATALINE (WNQFILE

Y"5) X15 CVERALL (NPR, X!6 / (OUOTE PLAG)))) : T ; (PRINTOUT Xfl_)))

i!7 512523 OVERALL pLA@ 33.8

_ 29.0

5 _._ ;_i:,,917 25. I

r, _ 21 .5
679 S _:'Zz;_ ?_. 7

6H'4 21.a

58 i 28.5

6_2 2a.6

:,, : _i ! !_"i J222 15.6

1_ 3_4.1

,gab -_ _ :{'?a6 a.7

_.a:,' -" !:, ?1j 7 37.8

eL, c, : 55 I795 7 19.2

796 g_t_58 37. I

435_ 3_PZ71 21.7

_'5_2 5 ;; 172 2_.a

_583 18.5
c_3: _: : _ 22._

aj 2 15.Z

,L

*** D70-15_ @

D78-173

D70-155

970-179

D70-159

D7Z-173

D7Z-3@5

D7Z-179

D70-15_

D7Z-3Z5

D7Z-159

D7Z-173

D7@-155

D7@-173

D70-179

D78-186

D70-3Z_

31
a_

0

_41

u2

G.5

SENTENCE:

(REFERENCES ON TRITIUM PRODUCTION)

PTIMING:

98a CONSES

8.686 SECONDS

PARSINGS:

S _PU

NP DET NIL

N REFERENCE

NU PL

PP P_EP ON

NP DET NIL

ADJ NP N TRITIUM

N P_ODUCTION

NU SG

ITIMING:

_65 CONSES

8.8_7 SEC_NDS

INTERPRETATIONS:

(FOR GEN X_7 / DOCUMENT : (ABOUT X17 (OR (TRITIUM PRODUCTION) (AND

(TRITIUM) (AND (TRITIUM) (PRODUCTION))))) ; (PRINTOUT X17))

D7@-9_6

D7@-_I

tL

G.6

S_NTENCE•
(POTASSI!_M/ RUBIDIUM RATIOS FOR TYPE A ROCKS)

PTIMING :

2UI CONSES

9, 127 SECONDS

PARSINGS :

S NPU

NP DET NIL

ADJ NP N N _O_ASSIUPi

/

N RUBIDIUM

N .__:T70

NU _L

PP p_:p FOR

tP D?T NIL

ADJ TYPE/A

N ROC_

NU PL

ITIM!N$:

_96 CONSES

9._12 SEC' t:DS

IN[F_PRS?.,TIONS:

FOR Gg_ X22 / (SSU_:ION ×I / (SEQ TYPEAS) : T ; (RATIO (QUOTE K20)

QUOTE P_) _I (NpFt X2 / (QUOTE OVERALL)))) : T ; (PRINTOUT X20))

52_._755 _I:_17 D7_-2_5

558._3, S i'!_'_17 D7,g-215)

519.22Ui _IC:_17 D7'/-218

_q8.79,_2 -:!:¢.917 D7?-236

5_!5.Z,_. ,'_ I'.'>11? D71-2_2

5:6.a_'_2 ,_i_,!7 <72,-253

,'_/',.5_ -_ <_?/17 <711-256

5q:'. 83 :_7 ! 11_,_I",' D7_I-257

-,(,a 97- _ :i''_"22 D7_ 227

c5',_22 _72-236

r-"ar",,.,_',','__"_''f_, D'7/-218

5"%.;,',7 '_ ',_",',t2_. D77-2_2

..b :_'_ .__ _,_57 D7<'-257

5:!-:.7"7 -_ '" ::_'J5"7 D7q-2%g

L_c)_.6_ _ "'P:_69 D7_'-236

51_.2> "_ :'"_;::46_D7_'-253

56_.h,_ ? :_i¢_7 _ Z7_-215

527. {!::c' " i :'i/7 _ P,7r_-25_]

:. :r-, 9" ' S'_'"72 :,7q-2_5)

3. ?/ "_ 5 i,-;';,'72 Z,77-218

6 '2.,"3g:'_ :'1.Z/TP D7:'-235
._T..

G.7

SENTENCE:

(WHAT IS THE AVERAGE K / RB RATIO IN BRECCIAS)

PTIMING:

_2_7 CONSES

i_.06 SEC?NDS

PARSINGS:

SO

NP DET THE

N AVERAGE

NU SG

PP PEEP OF

NP DET NIL

ADJ NP N N POTASSIUM

/
N RUBIDIUM

N RATIO

NU PL

PP PREP IN

NP DET NIL

N BRECCIA

NU PL

AUX TNS PRESENT

VP V BE

NP DET WHQ

N THING

NU SG/PL

ITIMING:

_0Z4 CONSES

9.387 SECCNDS

INTERPRETATIONS:

(FOR THE X5 / (SFQL (AVERAGE X6 / (SSUNION X7 / (SEQ TYPECS) : T ;

RATIO (OUO, K20) (QUOTE RB) X7 (NPR" X8 / (QUOTE OVERALL)))) . T))

: T ; (PPINTOUT X5))

OVERALL (a76.9119)

,L

G.8

SENTENCE:
(IN WHICH SAMPLES HAS APATITE BEEN IDENTIFIED)

PTIMING:

1523 CONSES

"_0.819 SECONDS

PARSINGS:

SQ

NP DET WHICHQ

N SAMPLE

NU PL

S REL

NP PRO SOMETHING

PERFECT

VP V IDENTIFY

NP DET NIL

N APATITE

NU SG

PP PREP IN

NP DET WHR

N SAMPLE

NU PL

AUX TNS NIL

VP V BE

ITIMING:

_878 CONSES

7.677 SECONDS

INTERPRETATIONS:

{FOR EVERY X15 / (SEQ SAMPLES) : (CONTAIN X15 (NPR_ X17 / (QUOTE APATITE)

(QUOTE NIL)) ; (PRINTOUT X 5))

;70ZU

s100u5

s10%85

,L

G.9

SENTEgCE:
(WHICH ROCKSCONTAIN CHROMITEAND ULVOSPINEL)
PTIMING:
_23 CO_SES

7.743 S_CONDS
PARSINGS:
S _PO

NP DET WHICHQ
N ROCK
NU PL
S Q_EL

NP DZT WHR
N ROCK
NU PL

i[JX TNS PReSeNT
VP V CONTAIN

NP AND

NP DET NIL

N CHROMITE

_U SG

NP DET NIL

N SPIN_:L

_:U S G

ITI_IN_:

89Z CO_SES

Q.782 $5C ,IDS

INTERPREZATIONS:

(FOR EVEPY X7 / (SEQ VOLCANICS) : (AND (CONTAIN X7 (NPR. X9 / (QUOTE

SPINZL)! (OUOTE NIL)) (CONTAIN X7 (NPR" XI@ / (QUOTE CHROMITE)) (QUOTE
NIL))) ; (PRI_4TOI_T X7))

,L

G.IO

SENTENCE:
{DO ANY BEECCIAS CONTAIN ALUMINUM)
PTIMING:
;I_ CONSES

6._8 SECONDS

PARSIN_S:

SO

NP DET ;_Ny

H BPECCIA

NU PL

AUX TNS PRESENT

VP V CONTAIN

NP DET NIL

N AL_!MINUM

_U SG

ITIMiNG:

99_ CONSES

5,@_] SEC_[NDS

INTERPRETATIONS:

{TEST (FOR SOME X2 / (SEQ TZPECS) : T _ (CONTAIN X2 (NPRs X3 / (QUOTE

AL203)) CQIIOTE NIL))))

YES.

T

'L

G.II

SENTENCE:
(WHAT APF THOSE8RECC!_S)
PTIMING:
7 CONSFS

2.375 SECCNDS

PARSINGS:

S 0

NP DET THOSE

N BRECCIA

NU P_

AUX TNS PRESENT

VP V B_

NP DET WHQ

THING

_U SG/PL

I_IMIN_:

624 CONSFS

2.81u SEC _ID$

!NT_RP_ETITIONS:

(FOR EVERY X2 / (SEQ TYPECS) : (AND T (CONTAIN X2 (NPR* X3 / (QUOTE

AL20?)) (QUOTE NIL))) ; (PRINTOUT X2))

$19318

S1_21

SI_Ma6

$Ig_56
s1¢g59

$1g_6_

$I/961

$1[_

S_66

81_67

$1_7_

$I_7_

51_37_

Sl_7B
,L

G.12

SENTENCE:
(HOWMANYSAMPLESCONTAI_i CHROMITE)
PTIMING:

_18 CONSES

_,579 SEC?NDS

PASSINGS:

S NPQ

NP DEr HOWMANY

N SAMPLE

NU PL

S OPEL

NP D_T WHR

N SAMPLE

NU PL

AUX TNS PRESENT

vp V CONTAIN

NP DET NIL

N CHROMITE

NU SS

5u6 CO;SEE

t.277 S_C NDS

INTERPRETZTIONS:

IFOR _HE XI3 / (SEOL (NUMBER X13 / (SEQ SAMPLES) : (CONTAIN X13 (NPR*

X_5 / _14U_TI CHROMITe)) (QUOTE NIL)))) : T ; (PRINTOUT X13))

_L

G.13

SENTI_NCE:

(WHAT ARF_ THEY)

PTIL_!NG :

376 CONS?S

.536 SEC:NDS

P;_RSINGS:

s 0

NP PPO THEY

N[_ PL

AUX T,_S PRESENT

VP V BF

_F DET WHO

N THING

_U SG/PL

ITIMINS-

3] CO,,] S ES

7,296 S :::C : "! D S

].Nq.TRPRET/.TIONS :

(FOR EVa_,Y XlJ / (SEQ SAMPLES) : (CONTAIN X13 (NOR, X15 / (QUOT_

CH!Oi',ITE)) (OUOT_. NIL)) ; (PBTNIOUT X13))

< 79_5

g _J '_J8

_L

G.14

SENTENCE:

(CAN YOU GIVE ME ALL CHROMITE ANALYSES FOR THOSE SAMPLES)

P_IMING:

,173 CONSES

_.729 SECPNDS

PARSINGS:

SQ

NP PRO YOU

NU SG/PL

AUX TNS PRESENT

MODAL CAN

VP V GIVE

NP DET ALL

PRO ONES

NU SG/PL

PP PREP OF

NP DET NIL

ADJ NP N CHROMITE

N ANALYSIS

NU PL

PP PREP FOP

NP DET THOSE

N SAMPLE

NU PL

PP PREP TO

'_P PPO I

NU NIL

1!2_5 COT{SES

2._21 SECONDS

INTENPPETATIONS:

:FOR EVERY X13 / (SEQ SAMPLES) : (CONTAIN X13 (N£R, X15 / (QUOTE

CHROMITE)) (OUOTE NIL)) ; (FOR EVERY X18 / (SSUNION XI / (SEQ MAJORELTS)

: " ; (DkTALINE (WHQFILE X 3) X13 (NPR. X2Z / (QUOT7 CHROMITE)) XI))

: T ; (PRINTOUT X18)))

777 $I_@2@ CHROMITE TIO2 21.9

772 AL203 7.@5

77_ FEO _4._

776 MNO .17

775 MGO 3.7

3632 S I?_5 TI02 21._I

3633 22._8

3622 AL203 6.32

3623 5.7a

3626 FEO a_.36

3627 _._I

363_ MNO ,59

363_ .69

3628 MGO 3.22

3629 3.2

,L

PCT D70-I_Z Z

D70- 195

(* The other sample has only modal chromite analyses.)

20

21

2_

21

2_

21

2_

21

20
21

G.15

SENTENCE:
(NOW MANYBRECCIAS DO NOT CONTAIN EUROPIUM)

PTIMING:

1223 CONSES

6.272 SECONDS

PARSINGS:

S NPQ

NP DET HOWMANY

N BRECCIA

NU PL

S OREL

NEG

NP DET WHR

N BRECCIA

NU PL

AUX TNS PRESENT

VP V CONTAIN

NP DET NIL

N EUROPIUM

NU 56

ITIMING:

i57Z CONSES

8.593 SECONDS

INTERPRETATIONS:

(FOR THE X3 / (SZQL (NUMBER X3 / ($EQ TYPEC5) x (NOT (CONTA£N X3 (NPR,

X5 / (QUOTE EU)) (QUOTE N_L))))) : T ; (PMINTOUT X3))

"i)

_L

G.16

SENTENCE:
(WHICH BRECCIA IS THAT)

PTIMING:

921CONSES

7,_6 SECONDS

PARSINGS_

S NPQ

NP DET WHICHO

N BRECCIA

NU SG

S QREL

NP PRO THAT

NU NIL

AUX TNS PRESENT

VP V BE

NP DET WHR

N BRECCIA

NU SG

ITIMING:

!653 CONSES

6.783 SECONDS

INTERPRETATIONS:

(FOR THE X6 / (SEQ TYPECS) : (FOR EVERY X3 / (5EQ TYPECS) : (NOT (

CONTAIN X3 (NPR* X5 / (QUOTE EU)) (QUOTE NIL))) ; (EQUAL X3 X6)) ;

(PRINTOUT X6))

G.17

SENTENCE:
(DOES S1_ZZ_ CONTAIN EUROPIUM IN PLAG)

PTIMING:

_69 CONSES

0.525 SECONDS

PARSINGS:

SO

NP DET NIL

NPR S10_Z_

NU SG

AUX TNS PRESENT

VP V CONTAIN

NP DET NIL

N EUROPIUM

NU SG

PP PREP IN

NP DET NIL

N PLAG

NU SG

ITIMING:

952 CONS_S

_.931 SECONDS

INTEPPRETATIONS:

{TEST (CONTAIN (NPR, X3 / (QUOTE SIZZZ_)) (NPR_ X4 / (QUOTE EU)) (NPR,

×5 / (QUOTE PLAG))))

_L

G.18

SENTENCE:
(DOES IT CONTAIN _T IN OLIVINE)

PTIMING:

862 CONSES

L_,5_8 SECONDS

PARSINGS:

SO

NP PRO IT

NU SG

AUX TNS PBESENT

Vp V CONTAIN

NP PRO IT

NU SG

PP PREP IN

NP DET NIL

N OLIVINE

NU SG

ITIMING:

381 CONSES

6.375 SECONDS

INTERPRETATIONS:

(TEST (CONTAIN (NPR* X3 / (QUOTE SI_@@U)) (NPR* X16 / (QUOTE EU))

(NPB* X17 / (QUOTE OLIV))))

_L

G.19

SENTENCE:
(HOWMANYLUNAR SAMPLES ABE THERE)
PTIMING:

US_ CONSES

2,039 SECCNDS

PARSINGS:

S NPO

NP DET HOWMANY

ADJ LUNAR

N SAMPLE

NU PL

S QREL

NP PET WHR

N SAMPLE

NU PL

AUX TNS PRESENT

Vp V EXIST

ITIMING:

_98 CONSFS

5,152 SECt NDS

INTERPRETATIONS:

(FOR THE X12 / [SEQL (NUMBER X12 / (SEQ SAMPLES) : (EXIST X12))) :

T ; (PRINTOUT X12))

G.20

SENTENCE:
(WHAT TYPE OF SAMPLEIS SIZO_6)

PTIMING:

2000 CONSES

iI._75 SECONDS

PARSINSS:

S NPQ

NP DET WHQ

N TYPE

NU SG

PP PREP OF

NP DET NIL

N SAMPLE

NU SG

S QREL

NP DET NIL

NPR $IZ_6

NU SG

AUX TNS PRESENT

Vp V BE

NP DET WHB

N TYPE

NU SG

!TIMING:

:455 CONSES

7.5C_ SECONDS

INTERPRETATIONS:

(FOR THE X3 / (SEQ SAMPLETYPES) : (AND (MEMBER* (NPR* X_ / (QUOTE

S IZZ_6)) X3) T) ; (PRINTOUT X3))

BRECCIAS

_L

G.21

SENTENCE:
(WHICH IS THE OLDEST ROCK)

PTIMING:

870 CONSES

U,35 SECONDS

PARSINGS:

SQ

NP DET THE

N OLD

SUPERLATIVE

NU SG

PP PREP OF

NP DET NIL

N ROCK

NU PL

AUX TNS PRESENT

VP V BE

NP DET WHQ

N THING

NU SG/PL

ITIMING:

097 CONSES

U.717 SECONDS

INTERPRETATIONS:

(FOR THE X14 / (SEQL (OLDEST X!5 / (SEQ VOLCANICS) : T)) : T ; (PRINTOUT

×i_))

G.22

CHOW IIUCH TITANIUM DOES EACH BP_CCIA CONTAINS)
PTIHIN,3 "

1131 CONSEf

R.56 I SECCNDS

PAF SI_GS :

S 0

NP DET E_C_

N BPECCIA

L;U SG

AUX TNS PRE_ENT

VP 7 CONTAIN

>'P DET POSTAPT COMP ADV HOW

MUCH

;: TITANIUH

N U S¢,

ITIMINC_ :

R58 CONSES

_.312 5EC NDS

INTEPPREIATIONS:

(FOR EVERY X16 / (SEO TYPECS) : T ; (CONTAIN' X16 (NPR* X17 / (QUOTE
TI02)) thJT,W) I)

s l V,_ i 8

$1¢2 9

S 1v)f_? !

S t :" j<_!,

2 1 ?',_:_,.:.L,

" r; _-,6,6

,L

(8.252875 . PCT)

(8._685 . PCT)

(7.7396_ . PCT)

(7._4237_5 . PCT)

t8.7_678 . PCT)

_8.2_897 . PCT)

(8.13199 . PCT)

fS." 7_667 . PCT)

6£.6a29_ . PCT)

(9.3_136 . PCT)

(8. _7369 . PCT)

t_._aJ93 . PCY)

t l._qZ$7 . PCT)

(0.7_75 . PC2)

,. F_,)

(7.5;,>5u5 . PCT)

G.23

SENTENCE:
(WHICH SAMPLESHAVE GREATER THAN 2Z PERCENT MODAL PLAGIOCLASE)
PTIMINS:

11.0 CONSES

5,353 SECONDS

PARSINGS:

S NPQ

NP DET WHICHQ

N SAMPLE

NU PL

S QREL

NP DET WHR

N SAMPLE

NU PL

AUX TNS PRESENT

VP V HAVE

NP DET ART NIL

POSTART COMP ADV GREATERTHAN

NP INTEGER 2Z

UNIT PCT

MUCH

ADJ MODAL

N PLAGIOCLASE

NU SG

ITIMIN3:

;_25 CONSES

6,811 SECONDS

INTERPRETATIONS:

(FOR EVERY X8 / (SEQ SAMPLES) : (CONTAIN' X8 (NPR. X9 / (QUOTE PLAG))

(GREATERTHAN 2_ PCT)) ; (PRINTOUT XS))

SlOZZ3

S10017

_10020

S1Z@U_

$180_7

S1005B

5t_@71
,L

G.24

SENTENCE:
(IN HOW _ANY BRECCTAS IS THE AVERAGE CONCENTRATION OF ALUMINUM GREATER

THAN 13 PERCENT)
PTIMING:

_123 CONSES

9.749 SECONDS

PARSINGS:

S NPQ

NP DET HOWMANY

N BRECCIA

NU PL

S REL

NP DET THE

N AVERAGE

NU SG

PP PREP OF

NP DET NIL

N CONCENTRATION

NU PL

PP PREP IN

NP DET WHR

N BRECCIA

NU PL

PP PREP 05

NP DET NIL

NALUMINUM

NU SG

AUX TNS PRESENT

Vp v BE

NP DET ART NIL

POSTART COMP ADV GREATERTHAN

NP INTEGER 13

MANY

N PCT

NUSS

ITI_ING:

_531 CORSES

P@.8_5 S_CO_OS

INTE_RRET;TIONS:

(FOR THe: XQ / (SEQL (NUMBER X9 / (SEQ TYPECS) : (FOR THE XI@ / (SEQL

_AVE_AGE X_ / _DATALINE (WHQFILE X9) X9 (NPR, X_3 / (QUOTE OVERALL))

(NP[<* X _a / (QUOTE AL203))) : T)) : T ; (GREATER XIZ (QUOTE (13 .

PCT)))_)_ : T ; (PRINTOUT X9))

(7)

,i

G.25

Unclassified
Security Classification

DOCUMENT CONTROL DATA- R & D

'c,:ritF cla _ifi(;Jtion o[titlt', body of i_bstrt_cl iu_d indexirQ_ .mrrotrJfi_n mr_t bc enter_.d when the ow.r.Hl report i_ cl._itie(t)

O_I¢_PNA TING AC _ PVl TY (('otporate iJuthor)

Bolt Beranek and Newman Inc.

50 Moulton Street

Cambridge, Massachusetts

2a. REPORT SECURITY CLASSIFICA]ION

Unclassified
GROUP

RFPORT TITL E

THE LUNAR SCIENCES NATURAL LANGUAGE INFORMATION SYSTEM: FINAL REPORT

4 DESCRIPTIVE NOTES (Type o[report and. iochlsive dates)

Scientific, final report, July i, 1970 - June 15, 1972
5 AU THOR_S) (First name, middle initial, last name)

W.A. Woods, R.M. Kaplan, B. Nash-Webber

6 REPORT DA TE

15 June 1972

8zL CONTRACT OR GRANT NO

NAS9-1115
b. PROJECT NO

c

d

i

7_. TOT AL_ O_ F_AG ES 17b. NO, O_ RE FS

387] 14

9a. ORIGINATOR*S REPORT NUMBER{S)

BBN Report No. 2378

9b, OTHER REPORT NOIS) (Any other numbers that may be 8ssi_ned

this report)

10 DISTRIBUTION STATEMENT

Distribution of this document is unlimited. It may be released to

the Clearinghouse, Department of Commerce for sale to the general

public.
1 SUPPLEMENTARY NOTES

This research was performed by BBN,

subcontractor to Language Research

Foundation, for NASA,HSC,Houston.

12 SPONSORING _,41LITAF_Y ACTIVqTY

The Lunar Sciences Natural Language Information System (LNSLIS)

is a research prototype of a computer system to allow English language

access to a large data base of lunar sample information. It allows

a lunar geologist to ask questions, compute averages and ratios, make

selective listings, etc. on a file containing currently some 13,000

chemical analyses of the lunar samples, as well as to retrieve refer-

ences from a keyphrase index of documents (currently some i0,000

postings).

The emphasis of the LSNLIS project has been the development

of the language processing techniques for understanding natural

English requests, and the system contains a powerful language process-

ing component. The language processor has a vocabulary of some 3500

words, a transition network grammar for a sizable subset of English,

and a set of semantic interpretation rules for translating input

English requests into formal procedures for answering them.

This report includes detailed descriptions of the system,

and how it operates, together with examples of its performance and

an evaluation of the future prospects for such systems.

DD 1473
I NOv 65

S N I:,l C, 1 -8¢i7-68! 1

(PAGE 1)
Unclassified

Security Classification

'_ - :}140"4

Unclassified

Security Classification

KEY WOROS

artificial intelligence

computational linguistics

computational semantics

data management

data retrieval

English grammar

English language processing

fact retrieval

information systems

language processing

LSNLIS

lunar geology

lunar sciences

man-machine communication

natural language

natural language processing

non-deterministic programming

parsing

query languages

question-answering

semantic interpretation

semantics of natural language

transition network grammar

LINK A

RO L E W T

LINK B LINK C

ROLE WT ROLE WT

DD , °o?,01473
S/N 0101"807-6921

(BACK)
Unclassified
Security Classification

